These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 28988048)
21. Evaluation of fine organic mixtures for treatment of acid mine drainage in sulfidogenic reactors. Pérez N; Schwarz A; de Bruijn J Water Sci Technol; 2018 Nov; 78(8):1715-1725. PubMed ID: 30500795 [TBL] [Abstract][Full Text] [Related]
22. Sulfate-reducing bacterial community shifts in response to acid mine drainage in the sediment of the Hengshi watershed, South China. Bao Y; Jin X; Guo C; Lu G; Dang Z Environ Sci Pollut Res Int; 2021 Jan; 28(3):2822-2834. PubMed ID: 32895792 [TBL] [Abstract][Full Text] [Related]
23. Salinity and low temperature effects on the performance of column biochemical reactors for the treatment of acidic and neutral mine drainage. Ben Ali HE; Neculita CM; Molson JW; Maqsoud A; Zagury GJ Chemosphere; 2020 Mar; 243():125303. PubMed ID: 31760288 [TBL] [Abstract][Full Text] [Related]
24. Effect of hydraulic retention time on microbial community structure in wastewater treatment electro-bioreactors. ElNaker NA; Yousef AF; Hasan SW Microbiologyopen; 2018 Aug; 7(4):e00590. PubMed ID: 29573369 [TBL] [Abstract][Full Text] [Related]
25. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage. Burns AS; Pugh CW; Segid YT; Behum PT; Lefticariu L; Bender KS Biodegradation; 2012 Jun; 23(3):415-29. PubMed ID: 22083105 [TBL] [Abstract][Full Text] [Related]
26. Hydraulic retention time affects bacterial community structure in an As-rich acid mine drainage (AMD) biotreatment process. Fernandez-Rojo L; Casiot C; Tardy V; Laroche E; Le Pape P; Morin G; Joulian C; Battaglia-Brunet F; Braungardt C; Desoeuvre A; Delpoux S; Boisson J; Héry M Appl Microbiol Biotechnol; 2018 Nov; 102(22):9803-9813. PubMed ID: 30155752 [TBL] [Abstract][Full Text] [Related]
27. Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor. Liu Z; Li L; Li Z; Tian X Environ Technol; 2018 Jul; 39(14):1814-1822. PubMed ID: 28592226 [TBL] [Abstract][Full Text] [Related]
28. Design, application, and microbiome of sulfate-reducing bioreactors for treatment of mining-influenced water. Habe H; Sato Y; Aoyagi T; Inaba T; Hori T; Hamai T; Hayashi K; Kobayashi M; Sakata T; Sato N Appl Microbiol Biotechnol; 2020 Aug; 104(16):6893-6903. PubMed ID: 32556398 [TBL] [Abstract][Full Text] [Related]
29. Effects of organic substrates on sulfate-reducing microcosms treating acid mine drainage: Performance dynamics and microbial community comparison. Chai G; Wang D; Zhang Y; Wang H; Li J; Jing X; Meng H; Wang Z; Guo Y; Jiang C; Li H; Lin Y J Environ Manage; 2023 Mar; 330():117148. PubMed ID: 36584458 [TBL] [Abstract][Full Text] [Related]
30. Continuous-mode acclimation and operation of lignocellulosic sulfate-reducing bioreactors for enhanced metal immobilization from acidic mining-influenced water. Miranda EM; Severson C; Reep JK; Hood D; Hansen S; Santisteban L; Hamdan N; Delgado AG J Hazard Mater; 2022 Mar; 425():128054. PubMed ID: 34986575 [TBL] [Abstract][Full Text] [Related]
31. Crab shell amendments enhance the abundance and diversity of key microbial groups in sulfate-reducing columns treating acid mine drainage. Lin Y; Newcombe CE; Brennan RA Appl Microbiol Biotechnol; 2020 Oct; 104(19):8505-8516. PubMed ID: 32820375 [TBL] [Abstract][Full Text] [Related]
33. Elemental sulfur-driven sulfidogenic process under highly acidic conditions for sulfate-rich acid mine drainage treatment: Performance and microbial community analysis. Sun R; Zhang L; Wang X; Ou C; Lin N; Xu S; Qiu YY; Jiang F Water Res; 2020 Oct; 185():116230. PubMed ID: 32784032 [TBL] [Abstract][Full Text] [Related]
34. Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China. Hao C; Wei P; Pei L; Du Z; Zhang Y; Lu Y; Dong H Environ Pollut; 2017 Apr; 223():507-516. PubMed ID: 28131478 [TBL] [Abstract][Full Text] [Related]
35. Comparative effectiveness of mixed organic substrates to mushroom compost for treatment of mine drainage in passive bioreactors. Neculita CM; Yim GJ; Lee G; Ji SW; Jung JW; Park HS; Song H Chemosphere; 2011 Mar; 83(1):76-82. PubMed ID: 21262523 [TBL] [Abstract][Full Text] [Related]
36. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria. Rao AG; Ravichandra P; Joseph J; Jetty A; Sarma PN J Hazard Mater; 2007 Aug; 147(3):718-25. PubMed ID: 17324510 [TBL] [Abstract][Full Text] [Related]
37. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Jong T; Parry DL Water Res; 2006 Jul; 40(13):2561-71. PubMed ID: 16814360 [TBL] [Abstract][Full Text] [Related]
38. Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage. Logan MV; Reardon KF; Figueroa LA; McLain JE; Ahmann DM Water Res; 2005 Nov; 39(18):4537-51. PubMed ID: 16213004 [TBL] [Abstract][Full Text] [Related]
39. Carboxylic acids production via anaerobic fermentation: Microbial communities' responses to stepwise and direct hydraulic retention time decrease. Llamas M; Greses S; Tomás-Pejó E; González-Fernández C Bioresour Technol; 2022 Jan; 344(Pt B):126282. PubMed ID: 34752887 [TBL] [Abstract][Full Text] [Related]
40. Enrichment of psychrophilic and acidophilic sulfate-reducing bacterial consortia - a solution toward acid mine drainage treatment in cold regions. Dev S; Galey M; Chun CL; Novotny C; Ghosh T; Aggarwal S Environ Sci Process Impacts; 2021 Dec; 23(12):2007-2020. PubMed ID: 34821889 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]