These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 28988159)

  • 1. Chest compression during sustained inflation versus 3:1 chest compression:ventilation ratio during neonatal cardiopulmonary resuscitation: a randomised feasibility trial.
    Schmölzer GM; O Reilly M; Fray C; van Os S; Cheung PY
    Arch Dis Child Fetal Neonatal Ed; 2018 Sep; 103(5):F455-F460. PubMed ID: 28988159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SURV1VE trial-sustained inflation and chest compression versus 3:1 chest compression-to-ventilation ratio during cardiopulmonary resuscitation of asphyxiated newborns: study protocol for a cluster randomized controlled trial.
    Schmölzer GM; Pichler G; Solevåg AL; Fray C; van Os S; Cheung PY;
    Trials; 2019 Feb; 20(1):139. PubMed ID: 30782199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of different durations of sustained inflation during cardiopulmonary resuscitation on return of spontaneous circulation and hemodynamic recovery in severely asphyxiated piglets.
    Mustofa J; Cheung PY; Patel S; Lee TF; Lu M; Pasquin MP; OʼReilly M; Schmölzer GM
    Resuscitation; 2018 Aug; 129():82-89. PubMed ID: 29928955
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Schmölzer GM; Pichler G; Solevåg AL; Law BHY; Mitra S; Wagner M; Pfurtscheller D; Yaskina M; Cheung PY;
    Arch Dis Child Fetal Neonatal Ed; 2024 Jun; 109(4):428-435. PubMed ID: 38212104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation.
    Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Nicoll J; Bigam DL; Cheung PY
    Resuscitation; 2014 Feb; 85(2):270-5. PubMed ID: 24161768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chest Compressions during Sustained Inflations Improve Recovery When Compared to a 3:1 Compression:Ventilation Ratio during Cardiopulmonary Resuscitation in a Neonatal Porcine Model of Asphyxia.
    Li ES; Görens I; Cheung PY; Lee TF; Lu M; O'Reilly M; Schmölzer GM
    Neonatology; 2017; 112(4):337-346. PubMed ID: 28768280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chest compressions superimposed with sustained inflations during cardiopulmonary resuscitation in asphyxiated pediatric piglets.
    Morin CMD; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    Pediatr Res; 2024 Mar; 95(4):988-995. PubMed ID: 36932182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained Inflation During Chest Compression: A New Technique of Pediatric Cardiopulmonary Resuscitation That Improves Recovery and Survival in a Pediatric Porcine Model.
    Schmölzer GM; Patel SD; Monacelli S; Kim SY; Shim GH; Lee TF; O'Reilly M; Cheung PY
    J Am Heart Assoc; 2021 Aug; 10(15):e019136. PubMed ID: 34284596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chest Compressions During Sustained Inflation During Cardiopulmonary Resuscitation in Newborn Infants Translating Evidence From Animal Studies to the Bedside.
    Schmölzer GM
    JACC Basic Transl Sci; 2019 Feb; 4(1):116-121. PubMed ID: 30847426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiopulmonary resuscitation with chest compressions during sustained inflations: a new technique of neonatal resuscitation that improves recovery and survival in a neonatal porcine model.
    Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Qin S; Bigam DL; Cheung PY
    Circulation; 2013 Dec; 128(23):2495-503. PubMed ID: 24088527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Return of spontaneous Circulation Is Not Affected by Different Chest Compression Rates Superimposed with Sustained Inflations during Cardiopulmonary Resuscitation in Newborn Piglets.
    Li ES; Cheung PY; Lee TF; Lu M; O'Reilly M; Schmölzer GM
    PLoS One; 2016; 11(6):e0157249. PubMed ID: 27304210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous Chest Compressions During Sustained Inflations in a Perinatal Asphyxial Cardiac Arrest Lamb Model.
    Vali P; Chandrasekharan P; Rawat M; Gugino S; Koenigsknecht C; Helman J; Mathew B; Berkelhamer S; Nair J; Lakshminrusimha S
    Pediatr Crit Care Med; 2017 Aug; 18(8):e370-e377. PubMed ID: 28661972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous chest compressions with asynchronous ventilation improve survival in a neonatal swine model of asphyxial cardiac arrest.
    Aggelina A; Pantazopoulos I; Giokas G; Chalkias A; Mavrovounis G; Papalois A; Douvanas A; Xanthos T; Iacovidou N
    Am J Emerg Med; 2021 Oct; 48():60-66. PubMed ID: 33839633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Different Respiratory Modes on Return of Spontaneous Circulation in a Newborn Piglet Model of Hypoxic Cardiac Arrest.
    Mendler MR; Weber C; Hassan MA; Huang L; Waitz M; Mayer B; Hummler HD
    Neonatology; 2016; 109(1):22-30. PubMed ID: 26460587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myocardial perfusion and oxidative stress after 21% vs. 100% oxygen ventilation and uninterrupted chest compressions in severely asphyxiated piglets.
    Solevåg AL; Schmölzer GM; O'Reilly M; Lu M; Lee TF; Hornberger LK; Nakstad B; Cheung PY
    Resuscitation; 2016 Sep; 106():7-13. PubMed ID: 27344929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association between chest compression rates and clinical outcomes following in-hospital cardiac arrest at an academic tertiary hospital.
    Kilgannon JH; Kirchhoff M; Pierce L; Aunchman N; Trzeciak S; Roberts BW
    Resuscitation; 2017 Jan; 110():154-161. PubMed ID: 27666168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neonatal resuscitation with continuous chest compressions and high frequency percussive ventilation in preterm lambs.
    Giusto E; Sankaran D; Lesneski A; Joudi H; Hardie M; Hammitt V; Zeinali L; Lakshminrusimha S; Vali P
    Pediatr Res; 2024 Jan; 95(1):160-166. PubMed ID: 37726545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Return of spontaneous circulation with a compression:ventilation ratio of 15:2 versus 3:1 in newborn pigs with cardiac arrest due to asphyxia.
    Solevåg AL; Dannevig I; Wyckoff M; Saugstad OD; Nakstad B
    Arch Dis Child Fetal Neonatal Ed; 2011 Nov; 96(6):F417-21. PubMed ID: 21393311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of approaches to optimise chest compressions in the resuscitation of asphyxiated newborns.
    Solevåg AL; Cheung PY; O'Reilly M; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2016 May; 101(3):F272-6. PubMed ID: 26627554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous chest compression during sustained inflation versus continuous compression with asynchronized ventilation in an infantile porcine model of severe bradycardia.
    Morin C; Lee TF; O'Reilly M; Cheung PY; Schmölzer GM
    Resusc Plus; 2024 Jun; 18():100629. PubMed ID: 38617441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.