These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28988231)

  • 1. Principles of Current Vertebrate Neuromorphology.
    Nieuwenhuys R
    Brain Behav Evol; 2017; 90(2):117-130. PubMed ID: 28988231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the lamprey central nervous system, with reference to vertebrate evolution.
    Watanabe A; Hirano S; Murakami Y
    Zoolog Sci; 2008 Oct; 25(10):1020-7. PubMed ID: 19267638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The timing and sequence of appearance of neuromeres and their derivatives in staged human embryos.
    Müller F; O'Rahilly R
    Acta Anat (Basel); 1997; 158(2):83-99. PubMed ID: 9311417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polysialic acid in the plasticity of the developing and adult vertebrate nervous system.
    Rutishauser U
    Nat Rev Neurosci; 2008 Jan; 9(1):26-35. PubMed ID: 18059411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sexual differentiation of the vertebrate nervous system.
    Morris JA; Jordan CL; Breedlove SM
    Nat Neurosci; 2004 Oct; 7(10):1034-9. PubMed ID: 15452574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural, functional, and molecular organization of the brainstem.
    Nieuwenhuys R
    Front Neuroanat; 2011; 5():33. PubMed ID: 21738499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterned Vascularization of Embryonic Mouse Forebrain, and Neuromeric Topology of Major Human Subarachnoidal Arterial Branches: A Prosomeric Mapping.
    Puelles L; Martínez-Marin R; Melgarejo-Otalora P; Ayad A; Valavanis A; Ferran JL
    Front Neuroanat; 2019; 13():59. PubMed ID: 31275117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of nervous system centralization.
    Arendt D; Denes AS; Jékely G; Tessmar-Raible K
    Philos Trans R Soc Lond B Biol Sci; 2008 Apr; 363(1496):1523-8. PubMed ID: 18192182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroblast formation and patterning during early brain development in Drosophila.
    Urbach R; Technau GM
    Bioessays; 2004 Jul; 26(7):739-51. PubMed ID: 15221856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromodulation of central pattern generators in invertebrates and vertebrates.
    Dickinson PS
    Curr Opin Neurobiol; 2006 Dec; 16(6):604-14. PubMed ID: 17085040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Animal-microbe interactions and the evolution of nervous systems.
    Eisthen HL; Theis KR
    Philos Trans R Soc Lond B Biol Sci; 2016 Jan; 371(1685):20150052. PubMed ID: 26598731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Notes on the proliferation processes in the neuromeres in vertebrate embryos.
    KALLEN B
    Acta Soc Med Ups; 1952; 57(1-2):111-8. PubMed ID: 14952334
    [No Abstract]   [Full Text] [Related]  

  • 13. Regionalization of the forebrain from neural plate to neural tube.
    Papalopulu N
    Perspect Dev Neurobiol; 1995; 3(1):39-52. PubMed ID: 8542255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogfish Scyliorhinus canicula.
    Carrera I; Molist P; Anadón R; Rodríguez-Moldes I
    J Comp Neurol; 2008 Dec; 511(6):804-31. PubMed ID: 18925650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The specification of dorsal cell fates in the vertebrate central nervous system.
    Lee KJ; Jessell TM
    Annu Rev Neurosci; 1999; 22():261-94. PubMed ID: 10202540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of nociception in vertebrates: comparative analysis of lower vertebrates.
    Sneddon LU
    Brain Res Brain Res Rev; 2004 Oct; 46(2):123-30. PubMed ID: 15464201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadherin expression in the developing vertebrate CNS: from neuromeres to brain nuclei and neural circuits.
    Redies C
    Exp Cell Res; 1995 Oct; 220(2):243-56. PubMed ID: 7556431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The morphological pattern of the vertebrate brain.
    Nieuwenhuys R
    Eur J Morphol; 1999 Apr; 37(2-3):81-4. PubMed ID: 10342433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nervous systems and scenarios for the invertebrate-to-vertebrate transition.
    Holland ND
    Philos Trans R Soc Lond B Biol Sci; 2016 Jan; 371(1685):20150047. PubMed ID: 26598728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brainstem control of orienting movements: intrinsic coordinate systems and underlying circuitry.
    Masino T
    Brain Behav Evol; 1992; 40(2-3):98-111. PubMed ID: 1422810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.