These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 28988313)
21. Energetics of lizard embryos are not canalized by thermal acclimation. Angilletta MJ; Lee V; Silva AC Physiol Biochem Zool; 2006; 79(3):573-80. PubMed ID: 16691523 [TBL] [Abstract][Full Text] [Related]
22. An intertidal fish shows thermal acclimation despite living in a rapidly fluctuating environment. da Silva CRB; Riginos C; Wilson RS J Comp Physiol B; 2019 Aug; 189(3-4):385-398. PubMed ID: 30874900 [TBL] [Abstract][Full Text] [Related]
23. Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum). Windisch HS; Frickenhaus S; John U; Knust R; Pörtner HO; Lucassen M Mol Ecol; 2014 Jul; 23(14):3469-82. PubMed ID: 24897925 [TBL] [Abstract][Full Text] [Related]
24. Acclimation potential of Arctic cod (Boreogadus saida) from the rapidly warming Arctic Ocean. Drost HE; Lo M; Carmack EC; Farrell AP J Exp Biol; 2016 Oct; 219(Pt 19):3114-3125. PubMed ID: 27471275 [TBL] [Abstract][Full Text] [Related]
25. Stenotherms at sub-zero temperatures: thermal dependence of swimming performance in Antarctic fish. Wilson RS; Franklin CE; Davison W; Kraft P J Comp Physiol B; 2001 May; 171(4):263-9. PubMed ID: 11409623 [TBL] [Abstract][Full Text] [Related]
26. Resilience of cardiac performance in Antarctic notothenioid fishes in a warming climate. O'Brien KM; Joyce W; Crockett EL; Axelsson M; Egginton S; Farrell AP J Exp Biol; 2021 May; 224(10):. PubMed ID: 34042975 [TBL] [Abstract][Full Text] [Related]
27. Thermal sensitivity of lizard embryos indicates a mismatch between oxygen supply and demand at near-lethal temperatures. Hall JM; Warner DA J Exp Zool A Ecol Integr Physiol; 2021 Jan; 335(1):72-85. PubMed ID: 32297716 [TBL] [Abstract][Full Text] [Related]
28. DNA photorepair in echinoid embryos: effects of temperature on repair rate in Antarctic and non-Antarctic species. Lamare MD; Barker MF; Lesser MP; Marshall C J Exp Biol; 2006 Dec; 209(Pt 24):5017-28. PubMed ID: 17142690 [TBL] [Abstract][Full Text] [Related]
29. Embryonic developmental temperatures modulate thermal acclimation of performance curves in tadpoles of the frog Limnodynastes peronii. Seebacher F; Grigaltchik VS PLoS One; 2014; 9(9):e106492. PubMed ID: 25181291 [TBL] [Abstract][Full Text] [Related]
30. Cardiac plasticity influences aerobic performance and thermal tolerance in a tropical, freshwater fish at elevated temperatures. Nyboer EA; Chapman LJ J Exp Biol; 2018 Aug; 221(Pt 15):. PubMed ID: 29895683 [TBL] [Abstract][Full Text] [Related]
31. Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO Davis BE; Flynn EE; Miller NA; Nelson FA; Fangue NA; Todgham AE Glob Chang Biol; 2018 Feb; 24(2):e655-e670. PubMed ID: 29155460 [TBL] [Abstract][Full Text] [Related]
32. The carryover effects of embryonic incubation temperature on subsequent growth and thermal tolerance in white sturgeon. Cheung K; Nelson-Flower MJ; McAdam S; Brauner CJ J Therm Biol; 2024 Apr; 121():103860. PubMed ID: 38754202 [TBL] [Abstract][Full Text] [Related]
33. Untargeted metabolic profiling reveals distinct patterns of thermal sensitivity in two related notothenioids. Rebelein A; Pörtner HO; Bock C Comp Biochem Physiol A Mol Integr Physiol; 2018 Mar; 217():43-54. PubMed ID: 29288768 [TBL] [Abstract][Full Text] [Related]
34. Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance. Biederman AM; Kuhn DE; O'Brien KM; Crockett EL J Comp Physiol B; 2019 Apr; 189(2):213-222. PubMed ID: 30739144 [TBL] [Abstract][Full Text] [Related]
35. A falsification of the thermal specialization paradigm: compensation for elevated temperatures in Antarctic fishes. Seebacher F; Davison W; Lowe CJ; Franklin CE Biol Lett; 2005 Jun; 1(2):151-4. PubMed ID: 17148152 [TBL] [Abstract][Full Text] [Related]
36. Thermal stressors during embryo incubation have limited ontogenic carryover effects in brook trout. Lechner ER; Stewart EMC; Frasca VR; Jeffries KM; Wilson CC; Raby GD J Therm Biol; 2024 May; 122():103880. PubMed ID: 38850621 [TBL] [Abstract][Full Text] [Related]
37. Adapt, move or die - how will tropical coral reef fishes cope with ocean warming? Habary A; Johansen JL; Nay TJ; Steffensen JF; Rummer JL Glob Chang Biol; 2017 Feb; 23(2):566-577. PubMed ID: 27593976 [TBL] [Abstract][Full Text] [Related]
38. Growth and physiological responses in largemouth bass populations to environmental warming: Effects of inhabiting chronically heated environments. White DP; Wahl DH J Therm Biol; 2020 Feb; 88():102467. PubMed ID: 32125971 [TBL] [Abstract][Full Text] [Related]
39. Phenotypic and molecular consequences of stepwise temperature increase across generations in a coral reef fish. Bernal MA; Donelson JM; Veilleux HD; Ryu T; Munday PL; Ravasi T Mol Ecol; 2018 Nov; 27(22):4516-4528. PubMed ID: 30267545 [TBL] [Abstract][Full Text] [Related]