These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 28988477)
1. High-Throughput Low-Background G-Quadruplex Aptamer Chemiluminescence Assay for Ochratoxin A Using a Single Photonic Crystal Microsphere. Shen P; Li W; Liu Y; Ding Z; Deng Y; Zhu X; Jin Y; Li Y; Li J; Zheng T Anal Chem; 2017 Nov; 89(21):11862-11868. PubMed ID: 28988477 [TBL] [Abstract][Full Text] [Related]
2. A competitive aptamer chemiluminescence assay for ochratoxin A using a single silica photonic crystal microsphere. Shen P; Li W; Ding Z; Deng Y; Liu Y; Zhu X; Cai T; Li J; Zheng T Anal Biochem; 2018 Aug; 554():28-33. PubMed ID: 29860095 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous detection of ochratoxin A and fumonisin B1 in cereal samples using an aptamer-photonic crystal encoded suspension array. Yue S; Jie X; Wei L; Bin C; Dou Dou W; Yi Y; QingXia L; JianLin L; TieSong Z Anal Chem; 2014 Dec; 86(23):11797-802. PubMed ID: 25405701 [TBL] [Abstract][Full Text] [Related]
4. Exonuclease-assisted multicolor aptasensor for visual detection of ochratoxin A based on G-quadruplex-hemin DNAzyme-mediated etching of gold nanorod. Yu X; Lin Y; Wang X; Xu L; Wang Z; Fu F Mikrochim Acta; 2018 Apr; 185(5):259. PubMed ID: 29680954 [TBL] [Abstract][Full Text] [Related]
5. Label-Free G-Quadruplex Aptamer Fluorescence Assay for Ochratoxin A Using a Thioflavin T Probe. Wu K; Ma C; Zhao H; He H; Chen H Toxins (Basel); 2018 May; 10(5):. PubMed ID: 29757205 [TBL] [Abstract][Full Text] [Related]
6. Detection of ochratoxin A (OTA) in coffee using chemiluminescence resonance energy transfer (CRET) aptasensor. Jo EJ; Mun H; Kim SJ; Shim WB; Kim MG Food Chem; 2016 Mar; 194():1102-7. PubMed ID: 26471659 [TBL] [Abstract][Full Text] [Related]
7. Homogeneous assay of target molecules based on chemiluminescence resonance energy transfer (CRET) using DNAzyme-linked aptamers. Mun H; Jo EJ; Li T; Joung HA; Hong DG; Shim WB; Jung C; Kim MG Biosens Bioelectron; 2014 Aug; 58():308-13. PubMed ID: 24658027 [TBL] [Abstract][Full Text] [Related]
8. Aptamer-DNAzyme hairpins for biosensing of Ochratoxin A. Yang C; Lates V; Prieto-Simón B; Marty JL; Yang X Biosens Bioelectron; 2012 Feb; 32(1):208-12. PubMed ID: 22221796 [TBL] [Abstract][Full Text] [Related]
9. Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Wu H; Liu R; Kang X; Liang C; Lv L; Guo Z Mikrochim Acta; 2017 Dec; 185(1):27. PubMed ID: 29594393 [TBL] [Abstract][Full Text] [Related]
10. Facile combination of beta-cyclodextrin host-guest recognition with exonuclease-assistant signal amplification for sensitive electrochemical assay of ochratoxin A. Wang Y; Ning G; Wu Y; Wu S; Zeng B; Liu G; He X; Wang K Biosens Bioelectron; 2019 Jan; 124-125():82-88. PubMed ID: 30343160 [TBL] [Abstract][Full Text] [Related]
11. Highly stable colorimetric aptamer sensors for detection of ochratoxin A through optimizing the sequence with the covalent conjugation of hemin. Lee J; Jeon CH; Ahn SJ; Ha TH Analyst; 2014 Apr; 139(7):1622-7. PubMed ID: 24519363 [TBL] [Abstract][Full Text] [Related]
12. Primer remodeling amplification-activated multisite-catalytic hairpin assembly enabling the concurrent formation of Y-shaped DNA nanotorches for the fluorescence assay of ochratoxin A. Wang J; Wang Y; Liu S; Wang H; Zhang X; Song X; Yu J; Huang J Analyst; 2019 May; 144(10):3389-3397. PubMed ID: 30990481 [TBL] [Abstract][Full Text] [Related]
13. Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme-aptamer conjugates in wine. Yang C; Lates V; Prieto-Simón B; Marty JL; Yang X Talanta; 2013 Nov; 116():520-6. PubMed ID: 24148439 [TBL] [Abstract][Full Text] [Related]
14. Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification. Yang L; Zhang Y; Li R; Lin C; Guo L; Qiu B; Lin Z; Chen G Biosens Bioelectron; 2015 Aug; 70():268-74. PubMed ID: 25835519 [TBL] [Abstract][Full Text] [Related]
15. Titanium Dioxide Nanoparticles (TiO₂) Quenching Based Aptasensing Platform: Application to Ochratoxin A Detection. Sharma A; Hayat A; Mishra RK; Catanante G; Bhand S; Marty JL Toxins (Basel); 2015 Sep; 7(9):3771-84. PubMed ID: 26402704 [TBL] [Abstract][Full Text] [Related]
16. An iridium(III) complex/G-quadruplex ensemble for detection of ochratoxin A based on long-lifetime luminescent. Zhang JT; Kang TS; Wong SY; Pei RJ; Ma DL; Leung CH Anal Biochem; 2019 Sep; 580():49-55. PubMed ID: 31194944 [TBL] [Abstract][Full Text] [Related]
17. Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A. Hun X; Liu F; Mei Z; Ma L; Wang Z; Luo X Biosens Bioelectron; 2013 Jan; 39(1):145-51. PubMed ID: 22938841 [TBL] [Abstract][Full Text] [Related]
18. Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring. Lv L; Li D; Cui C; Zhao Y; Guo Z Biosens Bioelectron; 2017 Jan; 87():136-141. PubMed ID: 27542086 [TBL] [Abstract][Full Text] [Related]
19. Structure-switching aptasensors for sensitive detection of ochratoxin A. Fan YY; Wen J; Li J; Yang XW; Zhang L; Zhang ZQ Luminescence; 2023 Sep; 38(9):1678-1685. PubMed ID: 37455261 [TBL] [Abstract][Full Text] [Related]
20. A chemiluminescence aptasensor for thrombin detection based on aptamer-conjugated and hemin/G-quadruplex DNAzyme signal-amplified carbon fiber composite. Sun Y; Wang X; Xu H; Ding C; Lin Y; Luo C; Wei Q Anal Chim Acta; 2018 Dec; 1043():132-141. PubMed ID: 30392661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]