BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 28988616)

  • 21. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A photobioreactor for production of algae biomass from gaseous emissions of an animal house.
    Glockow T; Velaz Martín M; Meisch L; Kapieske D; Meissner K; Correa Cassal M; Kaster AK; Rabe KS; Niemeyer CM
    Appl Microbiol Biotechnol; 2023 Dec; 107(24):7673-7684. PubMed ID: 37815614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal intensity and biomass density for biofuel production in a thin-light-path photobioreactor.
    Jain A; Voulis N; Jung EE; Doud DF; Miller WB; Angenent LT; Erickson D
    Environ Sci Technol; 2015 May; 49(10):6327-34. PubMed ID: 25910004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of carbon dioxide sequestration potential of microalgae grown in a batch photobioreactor.
    Kargupta W; Ganesh A; Mukherji S
    Bioresour Technol; 2015 Mar; 180():370-5. PubMed ID: 25616748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Culture characteristics of the atmospheric and room temperature plasma-mutated Spirulina platensis mutants in CO2 aeration culture system for biomass production.
    Tan Y; Fang M; Jin L; Zhang C; Li HP; Xing XH
    J Biosci Bioeng; 2015 Oct; 120(4):438-43. PubMed ID: 25795571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Ethanol production with starch-based Tetraselmis subcordiformis grown with CO2 produced during ethanol fermentation].
    Liao S; Yao C; Xue S; Zhang W; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2011 Sep; 27(9):1292-8. PubMed ID: 22117512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CFD and kinetic-based modeling to optimize the sparger design of a large-scale photobioreactor for scaling up of biofuel production.
    Ali H; Solsvik J; Wagner JL; Zhang D; Hellgardt K; Park CW
    Biotechnol Bioeng; 2019 Sep; 116(9):2200-2211. PubMed ID: 31062867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utilization of centrate for the outdoor production of marine microalgae at pilot-scale in flat-panel photobioreactors.
    Romero-Villegas GI; Fiamengo M; Acién Fernández FG; Molina Grima E
    J Biotechnol; 2018 Oct; 284():102-114. PubMed ID: 30142413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon dioxide (CO
    Kassim MA; Meng TK
    Sci Total Environ; 2017 Apr; 584-585():1121-1129. PubMed ID: 28169025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel horizontal photobioreactor for high-density cultivation of microalgae.
    Dogaris I; Welch M; Meiser A; Walmsley L; Philippidis G
    Bioresour Technol; 2015 Dec; 198():316-24. PubMed ID: 26407345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological CO
    Duarte JH; de Morais EG; Radmann EM; Costa JAV
    Bioresour Technol; 2017 Jun; 234():472-475. PubMed ID: 28342576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of Fatty Acids and Protein by Nannochloropsis in Flat-Plate Photobioreactors.
    Hulatt CJ; Wijffels RH; Bolla S; Kiron V
    PLoS One; 2017; 12(1):e0170440. PubMed ID: 28103296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic fields as triggers of microalga growth: evaluation of its effect on Spirulina sp.
    Deamici KM; Costa JAV; Santos LO
    Bioresour Technol; 2016 Nov; 220():62-67. PubMed ID: 27566513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Outdoor phycocyanin production in a standalone thermally-insulated photobioreactor.
    Nwoba EG; Parlevliet DA; Laird DW; Alameh K; Moheimani NR
    Bioresour Technol; 2020 Nov; 315():123865. PubMed ID: 32721828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis.
    Hena S; Znad H; Heong KT; Judd S
    Water Res; 2018 Jan; 128():267-277. PubMed ID: 29107911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor.
    Ketheesan B; Nirmalakhandan N
    Bioresour Technol; 2012 Mar; 108():196-202. PubMed ID: 22277208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds.
    Huesemann MH; Van Wagenen J; Miller T; Chavis A; Hobbs S; Crowe B
    Biotechnol Bioeng; 2013 Jun; 110(6):1583-94. PubMed ID: 23280255
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Mukhopadhyay S; Jana A; Ghosh S; Majumdar S; Ghosh TK
    Int J Phytoremediation; 2022; 24(13):1364-1375. PubMed ID: 35075966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Attached cultivation for improving the biomass productivity of Spirulina platensis.
    Zhang L; Chen L; Wang J; Chen Y; Gao X; Zhang Z; Liu T
    Bioresour Technol; 2015 Apr; 181():136-42. PubMed ID: 25647023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cultivation of marine microalgae using shale gas flowback water and anaerobic digestion effluent as the cultivation medium.
    Racharaks R; Ge X; Li Y
    Bioresour Technol; 2015 Sep; 191():146-56. PubMed ID: 25989090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.