These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 28989301)
1. Density of convex intersections and applications. Hintermüller M; Rautenberg CN; Rösel S Proc Math Phys Eng Sci; 2017 Sep; 473(2205):20160919. PubMed ID: 28989301 [TBL] [Abstract][Full Text] [Related]
2. Novel projection neurodynamic approaches for constrained convex optimization. Zhao Y; Liao X; He X Neural Netw; 2022 Jun; 150():336-349. PubMed ID: 35344705 [TBL] [Abstract][Full Text] [Related]
3. Accelerated Optimization on Riemannian Manifolds via Discrete Constrained Variational Integrators. Duruisseaux V; Leok M J Nonlinear Sci; 2022; 32(4):42. PubMed ID: 35502199 [TBL] [Abstract][Full Text] [Related]
4. [Not Available]. Grasmair M; Haltmeier M; Scherzer O Appl Math Comput; 2011 Nov; 218(6):2693-2710. PubMed ID: 22345828 [TBL] [Abstract][Full Text] [Related]
5. An adaptive level set method for nondifferentiable constrained image recovery. Combettes PL; Luo J IEEE Trans Image Process; 2002; 11(11):1295-304. PubMed ID: 18249699 [TBL] [Abstract][Full Text] [Related]
6. Strong convergence theorem for split monotone variational inclusion with constraints of variational inequalities and fixed point problems. Guan JL; Ceng LC; Hu B J Inequal Appl; 2018; 2018(1):311. PubMed ID: 30839862 [TBL] [Abstract][Full Text] [Related]
7. Regularization with Metric Double Integrals of Functions with Values in a Set of Vectors. Ciak R; Melching M; Scherzer O J Math Imaging Vis; 2019; 61(6):824-848. PubMed ID: 31396002 [TBL] [Abstract][Full Text] [Related]
8. The general class of Wasserstein Sobolev spaces: density of cylinder functions, reflexivity, uniform convexity and Clarkson's inequalities. Sodini GE Calc Var Partial Differ Equ; 2023; 62(7):212. PubMed ID: 37581195 [TBL] [Abstract][Full Text] [Related]
9. Gradient Methods on Strongly Convex Feasible Sets and Optimal Control of Affine Systems. Veliov VM; Vuong PT Appl Math Optim; 2020; 81(3):1021-1054. PubMed ID: 32624632 [TBL] [Abstract][Full Text] [Related]
10. Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space. Bause M; Radu FA; Köcher U Numer Math (Heidelb); 2017; 137(4):773-818. PubMed ID: 29151621 [TBL] [Abstract][Full Text] [Related]
11. Smoothing neural network for L Li W; Bian W Neural Netw; 2021 Nov; 143():678-689. PubMed ID: 34403868 [TBL] [Abstract][Full Text] [Related]
12. Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network. Hu X; Wang J IEEE Trans Neural Netw; 2006 Nov; 17(6):1487-99. PubMed ID: 17131663 [TBL] [Abstract][Full Text] [Related]
13. Weak convergence theorem for a class of split variational inequality problems and applications in a Hilbert space. Tian M; Jiang BN J Inequal Appl; 2017; 2017(1):123. PubMed ID: 28615916 [TBL] [Abstract][Full Text] [Related]
14. On uniform regularity and strong regularity. Cibulka R; Preininger J; Roubal T Optimization; 2019; 68(2-3):549-577. PubMed ID: 31057306 [TBL] [Abstract][Full Text] [Related]
15. On the numerical corroboration of an obstacle problem for linearly elastic flexural shells. Peng X; Piersanti P; Shen X Philos Trans A Math Phys Eng Sci; 2024 Aug; 382(2277):20230306. PubMed ID: 39005020 [TBL] [Abstract][Full Text] [Related]
16. Convergence analysis of AdaBound with relaxed bound functions for non-convex optimization. Liu J; Kong J; Xu D; Qi M; Lu Y Neural Netw; 2022 Jan; 145():300-307. PubMed ID: 34785445 [TBL] [Abstract][Full Text] [Related]
17. On open and closed convex codes. Cruz J; Giusti C; Itskov V; Kronholm B Discrete Comput Geom; 2019 Mar; 61(2):247-270. PubMed ID: 31571705 [TBL] [Abstract][Full Text] [Related]
18. A novel hybrid soft computing optimization framework for dynamic economic dispatch problem of complex non-convex contiguous constrained machines. Ahmed I; Alvi UE; Basit A; Khursheed T; Alvi A; Hong KS; Rehan M PLoS One; 2022; 17(1):e0261709. PubMed ID: 35081127 [TBL] [Abstract][Full Text] [Related]
19. Learning With Mixed Hard/Soft Pointwise Constraints. Gnecco G; Gori M; Melacci S; Sanguineti M IEEE Trans Neural Netw Learn Syst; 2015 Sep; 26(9):2019-32. PubMed ID: 25389245 [TBL] [Abstract][Full Text] [Related]
20. Nitsche's Method For Helmholtz Problems with Embedded Interfaces. Zou Z; Aquino W; Harari I Int J Numer Methods Eng; 2017 May; 110(7):618-636. PubMed ID: 28713177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]