These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 2898949)
1. 1H Fourier transform NMR studies of insulin: coordination of Ca2+ to the Glu(B13) site drives hexamer assembly and induces a conformation change. Palmieri R; Lee RW; Dunn MF Biochemistry; 1988 May; 27(9):3387-97. PubMed ID: 2898949 [TBL] [Abstract][Full Text] [Related]
2. The Glu(B13) carboxylates of the insulin hexamer form a cage for Cd2+ and Ca2+ ions. Storm MC; Dunn MF Biochemistry; 1985 Mar; 24(7):1749-56. PubMed ID: 2860921 [TBL] [Abstract][Full Text] [Related]
3. 1H NMR studies of insulin: histidine residues, metal binding, and dissociation in alkaline solution. Ramesh V; Bradbury JH Arch Biochem Biophys; 1987 Oct; 258(1):112-22. PubMed ID: 3310894 [TBL] [Abstract][Full Text] [Related]
4. X-ray structure of an unusual Ca2+ site and the roles of Zn2+ and Ca2+ in the assembly, stability, and storage of the insulin hexamer. Hill CP; Dauter Z; Dodson EJ; Dodson GG; Dunn MF Biochemistry; 1991 Jan; 30(4):917-24. PubMed ID: 1671209 [TBL] [Abstract][Full Text] [Related]
5. Role of B13 Glu in insulin assembly. The hexamer structure of recombinant mutant (B13 Glu-->Gln) insulin. Bentley GA; Brange J; Derewenda Z; Dodson EJ; Dodson GG; Markussen J; Wilkinson AJ; Wollmer A; Xiao B J Mol Biol; 1992 Dec; 228(4):1163-76. PubMed ID: 1361949 [TBL] [Abstract][Full Text] [Related]
6. Insulin-metal ion interactions: the binding of divalent cations to insulin hexamers and tetramers and the assembly of insulin hexamers. Coffman FD; Dunn MF Biochemistry; 1988 Aug; 27(16):6179-87. PubMed ID: 3056521 [TBL] [Abstract][Full Text] [Related]
7. Effects of calcium ion on ternary complexes formed between 4-(2-pyridylazo)resorcinol and the two-zinc insulin hexamer. Kaarsholm NC; Dunn MF Biochemistry; 1987 Feb; 26(3):883-90. PubMed ID: 3552036 [TBL] [Abstract][Full Text] [Related]
9. Altered ionization of the B13 Glu in insulin B9 and B10 mutants: a computational analysis. Greaves RB; Dodson GG; Verma CS Protein Eng Des Sel; 2004 Jul; 17(7):557-63. PubMed ID: 15326283 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the properties of the multiple metal binding sites in alkaline phosphatase by carbon-13 nuclear magnetic resonance. Otvos JD; Armitage IM Biochemistry; 1980 Aug; 19(17):4021-30. PubMed ID: 6996714 [TBL] [Abstract][Full Text] [Related]
11. Role of metal ions in the T- to R-allosteric transition in the insulin hexamer. Kadima W Biochemistry; 1999 Oct; 38(41):13443-52. PubMed ID: 10521251 [TBL] [Abstract][Full Text] [Related]
12. Metal ion binding to dog osteocalcin studied by 1H NMR spectroscopy. Isbell DT; Du S; Schroering AG; Colombo G; Shelling JG Biochemistry; 1993 Oct; 32(42):11352-62. PubMed ID: 8218200 [TBL] [Abstract][Full Text] [Related]
13. Structural signatures of the complex formed between 3-nitro-4-hydroxybenzoate and the Zn(II)-substituted R(6) insulin hexamer. Olsen HB; Leuenberger-Fisher MR; Kadima W; Borchardt D; Kaarsholm NC; Dunn MF Protein Sci; 2003 Sep; 12(9):1902-13. PubMed ID: 12930990 [TBL] [Abstract][Full Text] [Related]
14. Solution 1H NMR investigation of Zn2+ and Cd2+ binding to amyloid-beta peptide (Abeta) of Alzheimer's disease. Syme CD; Viles JH Biochim Biophys Acta; 2006 Feb; 1764(2):246-56. PubMed ID: 16266835 [TBL] [Abstract][Full Text] [Related]
16. Raman spectroscopic study of the effects of Ca2+, Mg2+, Zn2+, and Cd2+ ions on calf thymus DNA: binding sites and conformational changes. Langlais M; Tajmir-Riahi HA; Savoie R Biopolymers; 1990; 30(7-8):743-52. PubMed ID: 2275976 [TBL] [Abstract][Full Text] [Related]
17. Spectral [corrected] studies on the cadmium-ion-binding properties of bovine brain S-100b protein. Donato H; Mani RS; Kay CM Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):13-8. PubMed ID: 2039467 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic signatures of the T to R conformational transition in the insulin hexamer. Roy M; Brader ML; Lee RW; Kaarsholm NC; Hansen JF; Dunn MF J Biol Chem; 1989 Nov; 264(32):19081-5. PubMed ID: 2681208 [TBL] [Abstract][Full Text] [Related]
19. Nuclear magnetic resonance investigation of cadmium 113 substituted pea and lentil lectins. Bhattacharyya L; Marchetti PS; Ellis PD; Brewer CF J Biol Chem; 1987 Apr; 262(12):5616-21. PubMed ID: 3571225 [TBL] [Abstract][Full Text] [Related]
20. Presence of endogenous calcium ion in horseradish peroxidase. Elucidation of metal-binding site by substitutions of divalent and lanthanide ions for calcium and use of metal-induced NMR (1H and 113Cd) resonances. Morishima I; Kurono M; Shiro Y J Biol Chem; 1986 Jul; 261(20):9391-9. PubMed ID: 3722203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]