These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2898965)

  • 1. The origins and trajectories of somatostatin reticulospinal neurons: a potential neurotransmitter candidate of the dorsal reticulospinal pathway.
    Bowker RM; Abbott LC
    Brain Res; 1988 May; 447(2):398-403. PubMed ID: 2898965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primate raphe- and reticulospinal neurons: effects of stimulation in periaqueductal gray or VPLc thalamic nucleus.
    Willis WD; Gerhart KD; Willcockson WS; Yezierski RP; Wilcox TK; Cargill CL
    J Neurophysiol; 1984 Mar; 51(3):467-80. PubMed ID: 6422009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and nonnociceptive neurons.
    Gray BG; Dostrovsky JO
    J Neurophysiol; 1983 Apr; 49(4):932-47. PubMed ID: 6854362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation.
    Basbaum AI; Fields HL
    J Comp Neurol; 1979 Oct; 187(3):513-31. PubMed ID: 489790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Descending inhibitions from the nucleus raphe magnus and adjacent reticular formation to the dorsal horn of the rat are not antagonized by bicuculline or strychnine.
    Johnston SE; Davies J
    Neurosci Lett; 1981 Oct; 26(1):43-7. PubMed ID: 6270604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reticulospinal neurons in lamprey: transmitters, synaptic interactions and their role during locomotion.
    Brodin L; Grillner S; Dubuc R; Ohta Y; Kasicki S; Hökfelt T
    Arch Ital Biol; 1988 Oct; 126(4):317-45. PubMed ID: 2904246
    [No Abstract]   [Full Text] [Related]  

  • 7. Brain stem origins of spinal projections in the lizard Tupinambis nigropunctatus.
    Cruce WL; Newman DB
    J Comp Neurol; 1981 May; 198(2):185-207. PubMed ID: 7240441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral reticular regions and the descending control of dorsal horn neurones of the cat: selective inhibition by electrical stimulation.
    Morton CR; Johnson SM; Duggan AW
    Brain Res; 1983 Sep; 275(1):13-21. PubMed ID: 6626971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for leucine-enkephalin immunoreactive neurons in the medulla which project to spinal cord in squirrel monkey.
    Edwards DL; Poletti CE; Foote WE
    Brain Res; 1987 Dec; 437(1):197-203. PubMed ID: 2827868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and nonnociceptive neurons.
    Dostrovsky JO; Shah Y; Gray BG
    J Neurophysiol; 1983 Apr; 49(4):948-60. PubMed ID: 6854363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raphespinal and reticulospinal neurons project to the dorsal vagal complex in the rat.
    Manaker S; Fogarty PF
    Exp Brain Res; 1995; 106(1):79-92. PubMed ID: 8542980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. I. Medullary nuclei.
    Newman DB
    J Hirnforsch; 1985; 26(2):187-226. PubMed ID: 2410489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in the cat.
    Sandkühler J; Fu QG; Zimmermann M
    J Neurophysiol; 1987 Aug; 58(2):327-41. PubMed ID: 3655871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of stimulating in raphe nuclei and in reticular formation on response of spinothalamic neurons to mechanical stimuli.
    McCreery DB; Bloedel JR; Hames EG
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):166-82. PubMed ID: 219156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential projections of cat medullary raphe neurons demonstrated by retrograde labelling following spinal cord lesions.
    Martin RF; Jordan LM; Willis WD
    J Comp Neurol; 1978 Nov; 182(1):77-88. PubMed ID: 701490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brainstem influences on transmission of somatosensory information in the spinocervicothalamic pathway.
    Dostrovsky JO
    Brain Res; 1984 Feb; 292(2):229-38. PubMed ID: 6692156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substantia nigra influences on the reticulospinal neurons: an electrophysiological and ionophoretic study in cats and rats.
    Perciavalle V
    Neuroscience; 1987 Oct; 23(1):243-51. PubMed ID: 3683863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Reticular pathways of corticofugal impulse transmission].
    Piliavskiĭ AI; Bulgakova NV; Shtraus P
    Neirofiziologiia; 1981; 13(5):491-9. PubMed ID: 7300959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medullary substrates of descending spinal inhibition activated by intravenous administration of [D-Ala2]methionine enkephalinamide in the rat.
    Randich A; Aimone LD; Gebhart GF
    Brain Res; 1987 May; 411(2):236-47. PubMed ID: 3607431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological evidence for an excitatory projection from ventromedial forebrain structures on to raphe- and reticulo-spinal neurones in the rat.
    Lumb BM; Morrison JF
    Brain Res; 1986 Aug; 380(1):162-6. PubMed ID: 3756468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.