These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28990019)

  • 21. Anticipating Cutoff Diameters in Deterministic Lateral Displacement (DLD) Microfluidic Devices for an Optimized Particle Separation.
    Pariset E; Pudda C; Boizot F; Verplanck N; Berthier J; Thuaire A; Agache V
    Small; 2017 Oct; 13(37):. PubMed ID: 28783259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical Study of Pillar Shapes in Deterministic Lateral Displacement Microfluidic Arrays for Spherical Particle Separation.
    Wei J; Song H; Shen Z; He Y; Xu X; Zhang Y; Li BN
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):660-7. PubMed ID: 26011890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DLD pillar shape design for efficient separation of spherical and non-spherical bioparticles.
    Ranjan S; Zeming KK; Jureen R; Fisher D; Zhang Y
    Lab Chip; 2014 Nov; 14(21):4250-62. PubMed ID: 25209150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Separation of Biological Particles in a Modular Platform of Cascaded Deterministic Lateral Displacement Modules.
    Pariset E; Parent C; Fouillet Y; François B; Verplanck N; Revol-Cavalier F; Thuaire A; Agache V
    Sci Rep; 2018 Dec; 8(1):17762. PubMed ID: 30531826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anisotropic permeability in deterministic lateral displacement arrays.
    Vernekar R; Krüger T; Loutherback K; Morton K; W Inglis D
    Lab Chip; 2017 Sep; 17(19):3318-3330. PubMed ID: 28861573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deterministic Lateral Displacement (DLD) Analysis Tool Utilizing Machine Learning towards High-Throughput Separation.
    Gioe E; Uddin MR; Kim JH; Chen X
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blood Cell Separation Using Polypropylene-Based Microfluidic Devices Based on Deterministic Lateral Displacement.
    Matsuura K; Takata K
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tunable deterministic lateral displacement of particles flowing through thermo-responsive hydrogel micropillar arrays.
    Tottori N; Nisisako T
    Sci Rep; 2023 Mar; 13(1):4994. PubMed ID: 36973401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the transport of particles/cells in high-throughput deterministic lateral displacement devices: Implications for circulating tumor cell separation.
    Aghilinejad A; Aghaamoo M; Chen X
    Biomicrofluidics; 2019 May; 13(3):034112. PubMed ID: 31186821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multidirectional sorting modes in deterministic lateral displacement devices.
    Long BR; Heller M; Beech JP; Linke H; Bruus H; Tegenfeldt JO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046304. PubMed ID: 18999523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining Electrostatic, Hindrance and Diffusive Effects for Predicting Particle Transport and Separation Efficiency in Deterministic Lateral Displacement Microfluidic Devices.
    Biagioni V; Balestrieri G; Adrover A; Cerbelli S
    Biosensors (Basel); 2020 Sep; 10(9):. PubMed ID: 32947949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manufacturing and wetting low-cost microfluidic cell separation devices.
    Pawell RS; Inglis DW; Barber TJ; Taylor RA
    Biomicrofluidics; 2013; 7(5):56501. PubMed ID: 24404077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pumpless deterministic lateral displacement separation using a paper capillary wick.
    Aghajanloo B; Ejeian F; Frascella F; Marasso SL; Cocuzza M; Tehrani AF; Nasr Esfahani MH; Inglis DW
    Lab Chip; 2023 Apr; 23(8):2106-2112. PubMed ID: 36943724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deterministic Lateral Displacement: Challenges and Perspectives.
    Hochstetter A; Vernekar R; Austin RH; Becker H; Beech JP; Fedosov DA; Gompper G; Kim SC; Smith JT; Stolovitzky G; Tegenfeldt JO; Wunsch BH; Zeming KK; Krüger T; Inglis DW
    ACS Nano; 2020 Sep; 14(9):10784-10795. PubMed ID: 32844655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visualizing the hydrodynamics in sieve-based lateral displacement systems.
    Dijkshoorn JP; de Valença JC; Wagterveld RM; Boom RM; Schutyser MAI
    Sci Rep; 2018 Aug; 8(1):12861. PubMed ID: 30150611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Force driven separation of drops by deterministic lateral displacement.
    Bowman T; Frechette J; Drazer G
    Lab Chip; 2012 Aug; 12(16):2903-8. PubMed ID: 22699242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays.
    Kim SC; Wunsch BH; Hu H; Smith JT; Austin RH; Stolovitzky G
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):E5034-E5041. PubMed ID: 28607075
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-dimensional Simulation of Motion of Red Blood Cells with Deterministic Lateral Displacement Devices.
    Jiao Y; He Y; Jiao F
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31212873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated leukocyte processing by microfluidic deterministic lateral displacement.
    Civin CI; Ward T; Skelley AM; Gandhi K; Peilun Lee Z; Dosier CR; D'Silva JL; Chen Y; Kim M; Moynihan J; Chen X; Aurich L; Gulnik S; Brittain GC; Recktenwald DJ; Austin RH; Sturm JC
    Cytometry A; 2016 Dec; 89(12):1073-1083. PubMed ID: 27875619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clogging-free microfluidics for continuous size-based separation of microparticles.
    Yoon Y; Kim S; Lee J; Choi J; Kim RK; Lee SJ; Sul O; Lee SB
    Sci Rep; 2016 May; 6():26531. PubMed ID: 27198601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.