These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 28990106)
1. Identification of key genes for diabetic kidney disease using biological informatics methods. Ma F; Sun T; Wu M; Wang W; Xu Z Mol Med Rep; 2017 Dec; 16(6):7931-7938. PubMed ID: 28990106 [TBL] [Abstract][Full Text] [Related]
2. Screening and Identification of Hub Genes in the Development of Early Diabetic Kidney Disease Based on Weighted Gene Co-Expression Network Analysis. Wei R; Qiao J; Cui D; Pan Q; Guo L Front Endocrinol (Lausanne); 2022; 13():883658. PubMed ID: 35721731 [TBL] [Abstract][Full Text] [Related]
3. Bioinformatics prediction and experimental verification of key biomarkers for diabetic kidney disease based on transcriptome sequencing in mice. Zhao J; He K; Du H; Wei G; Wen Y; Wang J; Zhou X; Wang J PeerJ; 2022; 10():e13932. PubMed ID: 36157062 [TBL] [Abstract][Full Text] [Related]
4. Correlation Between Serum 25-Hydroxyvitamin D Levels in Albuminuria Progression of Diabetic Kidney Disease and Underlying Mechanisms By Bioinformatics Analysis. Huang B; Wen W; Ye S Front Endocrinol (Lausanne); 2022; 13():880930. PubMed ID: 35634488 [TBL] [Abstract][Full Text] [Related]
5. Microarray analysis reveals gene and microRNA signatures in diabetic kidney disease. Cui C; Cui Y; Fu Y; Ma S; Zhang S Mol Med Rep; 2018 Feb; 17(2):2161-2168. PubMed ID: 29207157 [TBL] [Abstract][Full Text] [Related]
6. Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease. Zhang X; Chao P; Zhang L; Xu L; Cui X; Wang S; Wusiman M; Jiang H; Lu C Front Immunol; 2023; 14():1030198. PubMed ID: 37063851 [TBL] [Abstract][Full Text] [Related]
7. Bioinformatics analysis of fibroblasts exposed to TGF‑β at the early proliferation phase of wound repair. Mi B; Liu G; Zhou W; Lv H; Zha K; Liu Y; Wu Q; Liu J Mol Med Rep; 2017 Dec; 16(6):8146-8154. PubMed ID: 28983581 [TBL] [Abstract][Full Text] [Related]
8. Diabetic kidney disease-predisposing proinflammatory and profibrotic genes identified by weighted gene co-expression network analysis (WGCNA). Chen J; Luo SF; Yuan X; Wang M; Yu HJ; Zhang Z; Yang YY J Cell Biochem; 2022 Feb; 123(2):481-492. PubMed ID: 34908186 [TBL] [Abstract][Full Text] [Related]
9. Gene microarray analysis of expression profiles in Suberoyllanilide hyroxamic acid-treated Dendritic cells. Zhang J; Liu Y; Shi G Biochem Biophys Res Commun; 2019 Jan; 508(2):392-397. PubMed ID: 30502083 [TBL] [Abstract][Full Text] [Related]
10. Identification of candidate genes for necrotizing enterocolitis based on microarray data. Chen G; Li Y; Su Y; Zhou L; Zhang H; Shen Q; Du C; Li H; Wen Z; Xia Y; Tang W Gene; 2018 Jun; 661():152-159. PubMed ID: 29605607 [TBL] [Abstract][Full Text] [Related]
11. Bioinformatics analysis of key genes and signaling pathways associated with myocardial infarction following telomerase activation. Yang Y; Yang G; Du H; Dong N; Yu B Mol Med Rep; 2017 Sep; 16(3):2915-2924. PubMed ID: 28713962 [TBL] [Abstract][Full Text] [Related]
12. Identification of potential key lipid metabolism-related genes involved in tubular injury in diabetic kidney disease by bioinformatics analysis. Fan Y; He J; Shi L; Zhang M; Chen Y; Xu L; Han N; Jiang Y Acta Diabetol; 2024 Aug; 61(8):1053-1068. PubMed ID: 38691241 [TBL] [Abstract][Full Text] [Related]
13. A Network Pharmacology-Based Strategy for Unveiling the Mechanisms of Tripterygium Wilfordii Hook F against Diabetic Kidney Disease. Wang Y; Liu T; Ma F; Lu X; Mao H; Zhou W; Yang L; Li P; Zhan Y J Diabetes Res; 2020; 2020():2421631. PubMed ID: 33274236 [TBL] [Abstract][Full Text] [Related]
14. Integrated analysis of differentially expressed genes and pathways in triple‑negative breast cancer. Peng C; Ma W; Xia W; Zheng W Mol Med Rep; 2017 Mar; 15(3):1087-1094. PubMed ID: 28075450 [TBL] [Abstract][Full Text] [Related]
15. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data. Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134 [TBL] [Abstract][Full Text] [Related]
16. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data. Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618 [TBL] [Abstract][Full Text] [Related]
17. Delineating the underlying molecular mechanisms and key genes involved in metastasis of colorectal cancer via bioinformatics analysis. Qi C; Chen Y; Zhou Y; Huang X; Li G; Zeng J; Ruan Z; Xie X; Zhang J Oncol Rep; 2018 May; 39(5):2297-2305. PubMed ID: 29517105 [TBL] [Abstract][Full Text] [Related]
18. Identification of candidate target genes of pituitary adenomas based on the DNA microarray. Zhou W; Ma CX; Xing YZ; Yan ZY Mol Med Rep; 2016 Mar; 13(3):2182-6. PubMed ID: 26782791 [TBL] [Abstract][Full Text] [Related]
19. Identification of Key Candidate Genes and Chemical Perturbagens in Diabetic Kidney Disease Using Integrated Bioinformatics Analysis. Gao Z; S A; Li XM; Li XL; Sui LN Front Endocrinol (Lausanne); 2021; 12():721202. PubMed ID: 34557161 [TBL] [Abstract][Full Text] [Related]
20. Integrated Bioinformatics and Clinical Correlation Analysis of Key Genes, Pathways, and Potential Therapeutic Agents Related to Diabetic Nephropathy. Chen S; Chen L; Jiang H Dis Markers; 2022; 2022():9204201. PubMed ID: 35637650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]