BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28990317)

  • 1. An in vitro and in vivo characterization of fine WE43B magnesium wire with varied thermomechanical processing conditions.
    Griebel AJ; Schaffer JE; Hopkins TM; Alghalayini A; Mkorombindo T; Ojo KO; Xu Z; Little KJ; Pixley SK
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1987-1997. PubMed ID: 28990317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties, corrosion, and biocompatibility of Mg-Zr-Sr-Dy alloys for biodegradable implant applications.
    Ding Y; Lin J; Wen C; Zhang D; Li Y
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2425-2434. PubMed ID: 29193657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials.
    Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J
    J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications.
    Makkar P; Sarkar SK; Padalhin AR; Moon BG; Lee YS; Lee BT
    J Appl Biomater Funct Mater; 2018 Jul; 16(3):126-136. PubMed ID: 29607729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements.
    Chen Y; Dou J; Yu H; Chen C
    J Biomater Appl; 2019 May; 33(10):1348-1372. PubMed ID: 30854910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface characterization and cytotoxicity response of biodegradable magnesium alloys.
    Pompa L; Rahman ZU; Munoz E; Haider W
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():761-768. PubMed ID: 25687006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of magnesium alloys for use as an intraluminal tracheal for pediatric applications in a rat tracheal bypass model.
    Luffy SA; Wu J; Kumta PN; Gilbert TW
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1844-1853. PubMed ID: 30521126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current status and perspectives of zinc-based absorbable alloys for biomedical applications.
    Hernández-Escobar D; Champagne S; Yilmazer H; Dikici B; Boehlert CJ; Hermawan H
    Acta Biomater; 2019 Oct; 97():1-22. PubMed ID: 31351253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat treatment mechanism and biodegradable characteristics of ZAX1330 Mg alloy.
    Lin DJ; Hung FY; Lui TS; Yeh ML
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():300-8. PubMed ID: 25842139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A surface-engineered multifunctional TiO
    Lin Z; Wu S; Liu X; Qian S; Chu PK; Zheng Y; Cheung KMC; Zhao Y; Yeung KWK
    Acta Biomater; 2019 Nov; 99():495-513. PubMed ID: 31518705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo corrosion measurements of magnesium alloys.
    Witte F; Fischer J; Nellesen J; Crostack HA; Kaese V; Pisch A; Beckmann F; Windhagen H
    Biomaterials; 2006 Mar; 27(7):1013-8. PubMed ID: 16122786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of binary Mg-Ca alloys for use as biodegradable materials within bone.
    Li Z; Gu X; Lou S; Zheng Y
    Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of wire fretting on the corrosion resistance of common medical alloys.
    Siddiqui DA; Sivan S; Weaver JD; Di Prima M
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2487-2494. PubMed ID: 27660927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure.
    Bornapour M; Celikin M; Pekguleryuz M
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():16-24. PubMed ID: 25491955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical and degradation property improvement in a biocompatible Mg-Ca-Sr alloy by thermomechanical processing.
    Henderson HB; Ramaswamy V; Wilson-Heid AE; Kesler MS; Allen JB; Manuel MV
    J Mech Behav Biomed Mater; 2018 Apr; 80():285-292. PubMed ID: 29455038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of macrophages on in vitro corrosion behavior of magnesium alloy.
    Zhang J; Hiromoto S; Yamazaki T; Niu J; Huang H; Jia G; Li H; Ding W; Yuan G
    J Biomed Mater Res A; 2016 Oct; 104(10):2476-87. PubMed ID: 27223576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical characterization and in-vitro bio-assessment of AZ31B and AZ91E alloys as biodegradable implant materials.
    Ur Rahman Z; Pompa L; Haider W
    J Mater Sci Mater Med; 2015 Aug; 26(8):217. PubMed ID: 26216551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal.
    Willbold E; Kalla K; Bartsch I; Bobe K; Brauneis M; Remennik S; Shechtman D; Nellesen J; Tillmann W; Vogt C; Witte F
    Acta Biomater; 2013 Nov; 9(10):8509-17. PubMed ID: 23416472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Security assessment of magnesium alloys used as biodegradable implant material.
    Sun X; Cao ZY; Liu JG; Feng C
    Biomed Mater Eng; 2015; 26 Suppl 1():S119-27. PubMed ID: 26405877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate.
    Kaabi Falahieh Asl S; Nemeth S; Tan MJ
    J Biomed Mater Res B Appl Biomater; 2016 Nov; 104(8):1643-1657. PubMed ID: 26340081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.