BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28990386)

  • 1. An Adaptable Phospholipid Membrane Mimetic System for Solution NMR Studies of Membrane Proteins.
    Chien CH; Helfinger LR; Bostock MJ; Solt A; Tan YL; Nietlispach D
    J Am Chem Soc; 2017 Oct; 139(42):14829-14832. PubMed ID: 28990386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A saposin-lipoprotein nanoparticle system for membrane proteins.
    Frauenfeld J; Löving R; Armache JP; Sonnen AF; Guettou F; Moberg P; Zhu L; Jegerschöld C; Flayhan A; Briggs JA; Garoff H; Löw C; Cheng Y; Nordlund P
    Nat Methods; 2016 Apr; 13(4):345-51. PubMed ID: 26950744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cotranslational assembly of membrane protein/nanoparticles in cell-free systems.
    Levin R; Köck Z; Martin J; Zangl R; Gewering T; Schüler L; Moeller A; Dötsch V; Morgner N; Bernhard F
    Biochim Biophys Acta Biomembr; 2022 Nov; 1864(11):184017. PubMed ID: 35921875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saposin Lipid Nanoparticles: A Highly Versatile and Modular Tool for Membrane Protein Research.
    Flayhan A; Mertens HDT; Ural-Blimke Y; Martinez Molledo M; Svergun DI; Löw C
    Structure; 2018 Feb; 26(2):345-355.e5. PubMed ID: 29413323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of Diisobutylene Maleic Acid Copolymer (DIBMA) and Its Lipid Particle as a "Stealth" Membrane-Mimetic for Membrane Protein Research.
    Guo R; Sumner J; Qian S
    ACS Appl Bio Mater; 2021 Jun; 4(6):4760-4768. PubMed ID: 35007026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution solid-state NMR spectra of integral membrane proteins reconstituted into magnetically oriented phospholipid bilayers.
    Howard KP; Opella SJ
    J Magn Reson B; 1996 Jul; 112(1):91-4. PubMed ID: 8661314
    [No Abstract]   [Full Text] [Related]  

  • 7. Structure determination of membrane proteins in their native phospholipid bilayer environment by rotationally aligned solid-state NMR spectroscopy.
    Opella SJ
    Acc Chem Res; 2013 Sep; 46(9):2145-53. PubMed ID: 23829871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure of human saposin C: pH-dependent interaction with phospholipid vesicles.
    de Alba E; Weiler S; Tjandra N
    Biochemistry; 2003 Dec; 42(50):14729-40. PubMed ID: 14674747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state NMR spectroscopic studies of an integral membrane protein inserted into aligned phospholipid bilayer nanotube arrays.
    Lorigan GA; Dave PC; Tiburu EK; Damodaran K; Abu-Baker S; Karp ES; Gibbons WJ; Minto RE
    J Am Chem Soc; 2004 Aug; 126(31):9504-5. PubMed ID: 15291530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saposin-Lipoprotein Scaffolds for Structure Determination of Membrane Transporters.
    Lyons JA; Bøggild A; Nissen P; Frauenfeld J
    Methods Enzymol; 2017; 594():85-99. PubMed ID: 28779844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces.
    Clayton JC; Hughes E; Middleton DA
    Biochemistry; 2005 Dec; 44(51):17016-26. PubMed ID: 16363815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond detergent micelles: The advantages and applications of non-micellar and lipid-based membrane mimetics for solution-state NMR.
    Klöpfer K; Hagn F
    Prog Nucl Magn Reson Spectrosc; 2019; 114-115():271-283. PubMed ID: 31779883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural evaluation of phospholipid bicelles for solution-state studies of membrane-associated biomolecules.
    Glover KJ; Whiles JA; Wu G; Yu N; Deems R; Struppe JO; Stark RE; Komives EA; Vold RR
    Biophys J; 2001 Oct; 81(4):2163-71. PubMed ID: 11566787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies.
    Prosser RS; Volkov VB; Shiyanovskaya IV
    Biochem Cell Biol; 1998; 76(2-3):443-51. PubMed ID: 9923713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the interaction of saposin C with POPS and POPC phospholipids: a solid-state NMR spectroscopic study.
    Abu-Baker S; Qi X; Lorigan GA
    Biophys J; 2007 Nov; 93(10):3480-90. PubMed ID: 17704143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human cannabinoid 1 GPCR C-terminal domain interacts with bilayer phospholipids to modulate the structure of its membrane environment.
    Tiburu EK; Tyukhtenko S; Zhou H; Janero DR; Struppe J; Makriyannis A
    AAPS J; 2011 Mar; 13(1):92-8. PubMed ID: 21234731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural changes in a binary mixed phospholipid bilayer of DOPG and DOPS upon saposin C interaction at acidic pH utilizing 31P and 2H solid-state NMR spectroscopy.
    Abu-Baker S; Qi X; Newstadt J; Lorigan GA
    Biochim Biophys Acta; 2005 Nov; 1717(1):58-66. PubMed ID: 16289479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure determination of membrane proteins by nuclear magnetic resonance spectroscopy.
    Opella SJ
    Annu Rev Anal Chem (Palo Alto Calif); 2013; 6():305-28. PubMed ID: 23577669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-state NMR spectroscopic studies on the interaction of sorbic acid with phospholipid membranes at different pH levels.
    Chu S; Hawes JW; Lorigan GA
    Magn Reson Chem; 2009 Aug; 47(8):651-7. PubMed ID: 19444862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-polarization schemes for peptide samples oriented in hydrated phospholipid bilayers.
    Kim H; Cross TA; Fu R
    J Magn Reson; 2004 May; 168(1):147-52. PubMed ID: 15082260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.