BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

908 related articles for article (PubMed ID: 28990403)

  • 1. Redox Potential and ROS-Mediated Nanomedicines for Improving Cancer Therapy.
    Glass SB; Gonzalez-Fajardo L; Beringhs AO; Lu X
    Antioxid Redox Signal; 2019 Feb; 30(5):747-761. PubMed ID: 28990403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered Nanoparticles for Effective Redox Signaling During Angiogenic and Antiangiogenic Therapy.
    Nethi SK; Barui AK; Mukherjee S; Patra CR
    Antioxid Redox Signal; 2019 Feb; 30(5):786-809. PubMed ID: 29943661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment.
    Kwon S; Ko H; You DG; Kataoka K; Park JH
    Acc Chem Res; 2019 Jul; 52(7):1771-1782. PubMed ID: 31241894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smart Nanotherapeutic Targeting of Tumor Vasculature.
    Li Z; Di C; Li S; Yang X; Nie G
    Acc Chem Res; 2019 Sep; 52(9):2703-2712. PubMed ID: 31433171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delta-like ligand 4-targeted nanomedicine for antiangiogenic cancer therapy.
    Liu YR; Guan YY; Luan X; Lu Q; Wang C; Liu HJ; Gao YG; Yang SC; Dong X; Chen HZ; Fang C
    Biomaterials; 2015 Feb; 42():161-71. PubMed ID: 25542804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The redox-active nanomaterial toolbox for cancer therapy.
    Ibañez IL; Notcovich C; Catalano PN; Bellino MG; Durán H
    Cancer Lett; 2015 Apr; 359(1):9-19. PubMed ID: 25597786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles.
    Jiang W; Huang Y; An Y; Kim BY
    ACS Nano; 2015 Sep; 9(9):8689-96. PubMed ID: 26212564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-vascular nano agents: a promising approach for cancer treatment.
    Chen D; Qu X; Shao J; Wang W; Dong X
    J Mater Chem B; 2020 Apr; 8(15):2990-3004. PubMed ID: 32211649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle Delivery of MnO
    Chang CC; Dinh TK; Lee YA; Wang FN; Sung YC; Yu PL; Chiu SC; Shih YC; Wu CY; Huang YD; Wang J; Lu TT; Wan D; Chen Y
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44407-44419. PubMed ID: 32865389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries.
    Yoshitomi T; Nagasaki Y
    Adv Healthc Mater; 2014 Aug; 3(8):1149-61. PubMed ID: 24482427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-Based Nanoparticles Delivery Systems for Targeted Cancer Therapy: Lessons from Anti-Angiogenesis Treatments.
    de la Torre P; Pérez-Lorenzo MJ; Alcázar-Garrido Á; Flores AI
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32046010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting tumor hypoxia with stimulus-responsive nanocarriers in overcoming drug resistance and monitoring anticancer efficacy.
    Xie Z; Guo W; Guo N; Huangfu M; Liu H; Lin M; Xu W; Chen J; Wang T; Wei Q; Han M; Gao J
    Acta Biomater; 2018 Apr; 71():351-362. PubMed ID: 29545193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor-targeted induction of oxystress for cancer therapy.
    Fang J; Nakamura H; Iyer AK
    J Drug Target; 2007; 15(7-8):475-86. PubMed ID: 17671894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart Drug-Delivery Systems for Cancer Nanotherapy.
    Sanchez-Moreno P; Ortega-Vinuesa JL; Peula-Garcia JM; Marchal JA; Boulaiz H
    Curr Drug Targets; 2018 Feb; 19(4):339-359. PubMed ID: 27231107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Nano-Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions.
    Wang Y; Cai R; Chen C
    Acc Chem Res; 2019 Jun; 52(6):1507-1518. PubMed ID: 31149804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting Nanomedicine Efficacy with Hyperbaric Oxygen Therapy.
    Wang X; Li S; Liu X; Wu X; Ye N; Yang X; Li Z
    Adv Exp Med Biol; 2021; 1295():77-95. PubMed ID: 33543456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colon cancer therapy: recent developments in nanomedicine to improve the efficacy of conventional chemotherapeutic drugs.
    Prados J; Melguizo C; Ortiz R; Perazzoli G; Cabeza L; Alvarez PJ; Rodriguez-Serrano F; Aranega A
    Anticancer Agents Med Chem; 2013 Oct; 13(8):1204-16. PubMed ID: 23574385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing tumor chemotherapy and overcoming drug resistance through autophagy-mediated intracellular dissolution of zinc oxide nanoparticles.
    Hu Y; Zhang HR; Dong L; Xu MR; Zhang L; Ding WP; Zhang JQ; Lin J; Zhang YJ; Qiu BS; Wei PF; Wen LP
    Nanoscale; 2019 Jun; 11(24):11789-11807. PubMed ID: 31184642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor heterogeneity and nanoparticle-mediated tumor targeting: the importance of delivery system personalization.
    Swetha KL; Roy A
    Drug Deliv Transl Res; 2018 Oct; 8(5):1508-1526. PubMed ID: 30128797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.