BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 28990413)

  • 1. NADPH Oxidases and Their Roles in Skin Homeostasis and Carcinogenesis.
    Rudolf J; Raad H; Taieb A; Rezvani HR
    Antioxid Redox Signal; 2018 May; 28(13):1238-1261. PubMed ID: 28990413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH Oxidase as a Target for Modulation of Radiation Response; Implications to Carcinogenesis and Radiotherapy.
    Mortezaee K; Goradel NH; Amini P; Shabeeb D; Musa AE; Najafi M; Farhood B
    Curr Mol Pharmacol; 2019; 12(1):50-60. PubMed ID: 30318012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balancing reactive oxygen species in the epigenome: NADPH oxidases as target and perpetrator.
    Hayes P; Knaus UG
    Antioxid Redox Signal; 2013 May; 18(15):1937-45. PubMed ID: 23126619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADPH oxidases in bone homeostasis and osteoporosis.
    Schröder K
    Free Radic Biol Med; 2019 Feb; 132():67-72. PubMed ID: 30189265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carcinogenesis and Reactive Oxygen Species Signaling: Interaction of the NADPH Oxidase NOX1-5 and Superoxide Dismutase 1-3 Signal Transduction Pathways.
    Parascandolo A; Laukkanen MO
    Antioxid Redox Signal; 2019 Jan; 30(3):443-486. PubMed ID: 29478325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA Targeting Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Cancer.
    Kushwaha PP; Gupta S; Singh AK; Prajapati KS; Shuaib M; Kumar S
    Antioxid Redox Signal; 2020 Feb; 32(5):267-284. PubMed ID: 31656079
    [No Abstract]   [Full Text] [Related]  

  • 7. Regulation of NADPH Oxidases by G Protein-Coupled Receptors.
    Petry A; Görlach A
    Antioxid Redox Signal; 2019 Jan; 30(1):74-94. PubMed ID: 29466865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADPH Oxidases and Measurement of Reactive Oxygen Species.
    Amanso A; Lyle AN; Griendling KK
    Methods Mol Biol; 2017; 1527():219-232. PubMed ID: 28116720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH oxidase-derived reactive oxygen species: Dosis facit venenum.
    Schröder K
    Exp Physiol; 2019 Apr; 104(4):447-452. PubMed ID: 30737851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of NADPH Oxidases in the Etiology of Obesity and Metabolic Syndrome: Contribution of Individual Isoforms and Cell Biology.
    DeVallance E; Li Y; Jurczak MJ; Cifuentes-Pagano E; Pagano PJ
    Antioxid Redox Signal; 2019 Oct; 31(10):687-709. PubMed ID: 31250671
    [No Abstract]   [Full Text] [Related]  

  • 11. Understanding the biology of reactive oxygen species and their link to cancer: NADPH oxidases as novel pharmacological targets.
    Harrison IP; Selemidis S
    Clin Exp Pharmacol Physiol; 2014 Aug; 41(8):533-42. PubMed ID: 24738947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting NADPH oxidases for the treatment of cancer and inflammation.
    Bonner MY; Arbiser JL
    Cell Mol Life Sci; 2012 Jul; 69(14):2435-42. PubMed ID: 22581366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADPH Oxidases NOXs and DUOXs as putative targets for cancer therapy.
    Weyemi U; Redon CE; Parekh PR; Dupuy C; Bonner WM
    Anticancer Agents Med Chem; 2013 Mar; 13(3):502-14. PubMed ID: 22931418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aiding and abetting roles of NOX oxidases in cellular transformation.
    Block K; Gorin Y
    Nat Rev Cancer; 2012 Sep; 12(9):627-37. PubMed ID: 22918415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADPH Oxidases: Insights into Selected Functions and Mechanisms of Action in Cancer and Stem Cells.
    Skonieczna M; Hejmo T; Poterala-Hejmo A; Cieslar-Pobuda A; Buldak RJ
    Oxid Med Cell Longev; 2017; 2017():9420539. PubMed ID: 28626501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidases in the differentiation of endothelial cells.
    Hahner F; Moll F; Schröder K
    Cardiovasc Res; 2020 Feb; 116(2):262-268. PubMed ID: 31393561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH oxidases and ROS signaling in the gastrointestinal tract.
    Aviello G; Knaus UG
    Mucosal Immunol; 2018 Jul; 11(4):1011-1023. PubMed ID: 29743611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox signaling in the gastrointestinal tract.
    Pérez S; Taléns-Visconti R; Rius-Pérez S; Finamor I; Sastre J
    Free Radic Biol Med; 2017 Mar; 104():75-103. PubMed ID: 28062361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Mini-Review of Reactive Oxygen Species in Urological Cancer: Correlation with NADPH Oxidases, Angiogenesis, and Apoptosis.
    Miyata Y; Matsuo T; Sagara Y; Ohba K; Ohyama K; Sakai H
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29065504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance.
    Nguyen GT; Green ER; Mecsas J
    Front Cell Infect Microbiol; 2017; 7():373. PubMed ID: 28890882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.