These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 28990564)

  • 1. [MiRNAs: new actors in the physiopathology of multiple sclerosis].
    Jagot F; Davoust N
    Med Sci (Paris); 2017; 33(6-7):620-628. PubMed ID: 28990564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dysregulated Network of miRNAs Involved in the Pathogenesis of Multiple Sclerosis.
    Dolati S; Marofi F; Babaloo Z; Aghebati-Maleki L; Roshangar L; Ahmadi M; Rikhtegar R; Yousefi M
    Biomed Pharmacother; 2018 Aug; 104():280-290. PubMed ID: 29775896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opioid growth factor and low-dose naltrexone impair central nervous system infiltration by CD4 + T lymphocytes in established experimental autoimmune encephalomyelitis, a model of multiple sclerosis.
    Hammer LA; Waldner H; Zagon IS; McLaughlin PJ
    Exp Biol Med (Maywood); 2016 Jan; 241(1):71-8. PubMed ID: 26202376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis.
    Murphy AC; Lalor SJ; Lynch MA; Mills KH
    Brain Behav Immun; 2010 May; 24(4):641-51. PubMed ID: 20138983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ribosomal S6 kinase inhibitor BI-D1870 ameliorated experimental autoimmune encephalomyelitis in mice.
    Takada I; Yogiashi Y; Makishima M
    Immunobiology; 2016 Feb; 221(2):188-92. PubMed ID: 26386981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis.
    Thamilarasan M; Koczan D; Hecker M; Paap B; Zettl UK
    Autoimmun Rev; 2012 Jan; 11(3):174-9. PubMed ID: 21621006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simvastatin ameliorates experimental autoimmune encephalomyelitis by inhibiting Th1/Th17 response and cellular infiltration.
    de Oliveira DM; de Oliveira EM; Ferrari Mde F; Semedo P; Hiyane MI; Cenedeze MA; Pacheco-Silva A; Câmara NO; Peron JP
    Inflammopharmacology; 2015 Dec; 23(6):343-54. PubMed ID: 26559850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote control of T
    Vijitha N; Engel DR
    J Leukoc Biol; 2019 May; 105(5):827-828. PubMed ID: 30958568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis.
    Zhang J; Cheng Y; Cui W; Li M; Li B; Guo L
    J Neuroimmunol; 2014 Jan; 266(1-2):56-63. PubMed ID: 24332164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs targeting TGF-β signaling exacerbate central nervous system autoimmunity by disrupting regulatory T cell development and function.
    Rau CN; Severin ME; Lee PW; Deffenbaugh JL; Liu Y; Murphy SP; Petersen-Cherubini CL; Lovett-Racke AE
    Eur J Immunol; 2024 Jun; 54(6):e2350548. PubMed ID: 38634287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis.
    Jadidi-Niaragh F; Mirshafiey A
    Scand J Immunol; 2011 Jul; 74(1):1-13. PubMed ID: 21338381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The benefits and detriments of macrophages/microglia in models of multiple sclerosis.
    Rawji KS; Yong VW
    Clin Dev Immunol; 2013; 2013():948976. PubMed ID: 23840244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal Variations in Macrophages/Microglia Underlie Changes in the Mouse Model of Multiple Sclerosis Severity.
    Álvarez-Sánchez N; Cruz-Chamorro I; Álvarez-López AI; López-González A; Lacalle Remigio JR; Lardone PJ; Guerrero JM; Martínez-López A; Carrillo-Vico A
    Mol Neurobiol; 2020 Oct; 57(10):4082-4089. PubMed ID: 32661729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deleterious versus protective autoimmunity in multiple sclerosis.
    Kostic M; Stojanovic I; Marjanovic G; Zivkovic N; Cvetanovic A
    Cell Immunol; 2015 Aug; 296(2):122-32. PubMed ID: 25944389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Th1 not Th17 cells drive spontaneous MS-like disease despite a functional regulatory T cell response.
    Lowther DE; Chong DL; Ascough S; Ettorre A; Ingram RJ; Boyton RJ; Altmann DM
    Acta Neuropathol; 2013 Oct; 126(4):501-15. PubMed ID: 23934116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Th17 Cells in MS and Experimental Autoimmune Encephalomyelitis.
    Hofstetter H; Gold R; Hartung HP
    Int MS J; 2009 Apr; 16(1):12-8. PubMed ID: 19413921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Th17 cells in central nervous system autoimmunity.
    Sie C; Korn T; Mitsdoerffer M
    Exp Neurol; 2014 Dec; 262 Pt A():18-27. PubMed ID: 24681001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR-155-3p Drives the Development of Autoimmune Demyelination by Regulation of Heat Shock Protein 40.
    Mycko MP; Cichalewska M; Cwiklinska H; Selmaj KW
    J Neurosci; 2015 Dec; 35(50):16504-15. PubMed ID: 26674874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The critical role of antigen-presentation-induced cytokine crosstalk in the central nervous system in multiple sclerosis and experimental autoimmune encephalomyelitis.
    Sosa RA; Forsthuber TG
    J Interferon Cytokine Res; 2011 Oct; 31(10):753-68. PubMed ID: 21919736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR-20b suppresses Th17 differentiation and the pathogenesis of experimental autoimmune encephalomyelitis by targeting RORγt and STAT3.
    Zhu E; Wang X; Zheng B; Wang Q; Hao J; Chen S; Zhao Q; Zhao L; Wu Z; Yin Z
    J Immunol; 2014 Jun; 192(12):5599-609. PubMed ID: 24842756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.