These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28990628)

  • 1. Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information.
    Hasan MM; Guo D; Kurata H
    Mol Biosyst; 2017 Nov; 13(12):2545-2550. PubMed ID: 28990628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites.
    Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SOHPRED: a new bioinformatics tool for the characterization and prediction of human S-sulfenylation sites.
    Wang X; Yan R; Li J; Song J
    Mol Biosyst; 2016 Aug; 12(9):2849-58. PubMed ID: 27364688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comprehensive Review of In silico Analysis for Protein S-sulfenylation Sites.
    Hasan MM; Khatun MS; Kurata H
    Protein Pept Lett; 2018; 25(9):815-821. PubMed ID: 30182830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm.
    Ju Z; Wang SY
    J Theor Biol; 2018 Nov; 457():6-13. PubMed ID: 30125576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PredCSO: an ensemble method for the prediction of S-sulfenylation sites in proteins.
    Deng L; Xu X; Liu H
    Mol Omics; 2018 Aug; 14(4):257-265. PubMed ID: 29942948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites.
    Al-Barakati HJ; McConnell EW; Hicks LM; Poole LB; Newman RH; Kc DB
    Sci Rep; 2018 Jul; 8(1):11288. PubMed ID: 30050050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MDD-SOH: exploiting maximal dependence decomposition to identify S-sulfenylation sites with substrate motifs.
    Bui VM; Lu CT; Ho TT; Lee TY
    Bioinformatics; 2016 Jan; 32(2):165-72. PubMed ID: 26411868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iSulf-Cys: Prediction of S-sulfenylation Sites in Proteins with Physicochemical Properties of Amino Acids.
    Xu Y; Ding J; Wu LY
    PLoS One; 2016; 11(4):e0154237. PubMed ID: 27104833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fu-SulfPred: Identification of Protein S-sulfenylation Sites by Fusing Forests via Chou's General PseAAC.
    Wang L; Zhang R; Mu Y
    J Theor Biol; 2019 Jan; 461():51-58. PubMed ID: 30365947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Identification of Protein Pupylation Sites by Using Profile-Based Composition of k-Spaced Amino Acid Pairs.
    Hasan MM; Zhou Y; Lu X; Li J; Song J; Zhang Z
    PLoS One; 2015; 10(6):e0129635. PubMed ID: 26080082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-SulfPred: A sensitive predictor to capture S-sulfenylation sites based on a resampling one-sided selection undersampling-synthetic minority oversampling technique.
    Jia C; Zuo Y
    J Theor Biol; 2017 Jun; 422():84-89. PubMed ID: 28411111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of posttranslational modification sites from amino acid sequences with kernel methods.
    Xu Y; Wang X; Wang Y; Tian Y; Shao X; Wu LY; Deng N
    J Theor Biol; 2014 Mar; 344():78-87. PubMed ID: 24291233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties.
    Hasan MM; Yang S; Zhou Y; Mollah MN
    Mol Biosyst; 2016 Mar; 12(3):786-95. PubMed ID: 26739209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of S-nitrosylation sites by integrating support vector machines and random forest.
    Hasan MM; Manavalan B; Khatun MS; Kurata H
    Mol Omics; 2019 Dec; 15(6):451-458. PubMed ID: 31710075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue.
    Hasan MA; Li J; Ahmad S; Molla MK
    Anal Biochem; 2017 May; 525():107-113. PubMed ID: 28286168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BiGRUD-SA: Protein S-sulfenylation sites prediction based on BiGRU and self-attention.
    Zhang T; Jia J; Chen C; Zhang Y; Yu B
    Comput Biol Med; 2023 Sep; 163():107145. PubMed ID: 37336062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.