These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 28990628)
21. Bigram-PGK: phosphoglycerylation prediction using the technique of bigram probabilities of position specific scoring matrix. Chandra A; Sharma A; Dehzangi A; Shigemizu D; Tsunoda T BMC Mol Cell Biol; 2019 Dec; 20(Suppl 2):57. PubMed ID: 31856704 [TBL] [Abstract][Full Text] [Related]
22. A systematic identification of species-specific protein succinylation sites using joint element features information. Hasan MM; Khatun MS; Mollah MNH; Yong C; Guo D Int J Nanomedicine; 2017; 12():6303-6315. PubMed ID: 28894368 [TBL] [Abstract][Full Text] [Related]
23. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information. An JY; You ZH; Chen X; Huang DS; Yan G; Wang DF Mol Biosyst; 2016 Nov; 12(12):3702-3710. PubMed ID: 27759121 [TBL] [Abstract][Full Text] [Related]
24. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences. Cai B; Jiang X BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649 [TBL] [Abstract][Full Text] [Related]
25. PGluS: prediction of protein S-glutathionylation sites with multiple features and analysis. Zhao X; Ning Q; Ai M; Chai H; Yin M Mol Biosyst; 2015 Mar; 11(3):923-9. PubMed ID: 25599514 [TBL] [Abstract][Full Text] [Related]
26. PrAS: Prediction of amidation sites using multiple feature extraction. Wang T; Zheng W; Wuyun Q; Wu Z; Ruan J; Hu G; Gao J Comput Biol Chem; 2017 Feb; 66():57-62. PubMed ID: 27918921 [TBL] [Abstract][Full Text] [Related]
27. PSSM-Suc: Accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction. Dehzangi A; López Y; Lal SP; Taherzadeh G; Michaelson J; Sattar A; Tsunoda T; Sharma A J Theor Biol; 2017 Jul; 425():97-102. PubMed ID: 28483566 [TBL] [Abstract][Full Text] [Related]
28. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features. Li L; Luo Q; Xiao W; Li J; Zhou S; Li Y; Zheng X; Yang H J Bioinform Comput Biol; 2017 Feb; 15(1):1650025. PubMed ID: 27411307 [TBL] [Abstract][Full Text] [Related]
29. iAPSL-IF: Identification of Apoptosis Protein Subcellular Location Using Integrative Features Captured from Amino Acid Sequences. Tang Y; Xie L; Chen L Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29652843 [TBL] [Abstract][Full Text] [Related]
30. EvolStruct-Phogly: incorporating structural properties and evolutionary information from profile bigrams for the phosphoglycerylation prediction. Chandra AA; Sharma A; Dehzangi A; Tsunoda T BMC Genomics; 2019 Apr; 19(Suppl 9):984. PubMed ID: 30999859 [TBL] [Abstract][Full Text] [Related]
31. OH-PRED: prediction of protein hydroxylation sites by incorporating adapted normal distribution bi-profile Bayes feature extraction and physicochemical properties of amino acids. Jia CZ; He WY; Yao YH J Biomol Struct Dyn; 2017 Mar; 35(4):829-835. PubMed ID: 26957000 [TBL] [Abstract][Full Text] [Related]
32. Analysis and prediction of human acetylation using a cascade classifier based on support vector machine. Ning Q; Yu M; Ji J; Ma Z; Zhao X BMC Bioinformatics; 2019 Jun; 20(1):346. PubMed ID: 31208321 [TBL] [Abstract][Full Text] [Related]
33. PredNTS: Improved and Robust Prediction of Nitrotyrosine Sites by Integrating Multiple Sequence Features. Nilamyani AN; Auliah FN; Moni MA; Shoombuatong W; Hasan MM; Kurata H Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800121 [TBL] [Abstract][Full Text] [Related]
34. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou׳s general PseAAC. Ju Z; Cao JZ; Gu H J Theor Biol; 2016 May; 397():145-50. PubMed ID: 26908349 [TBL] [Abstract][Full Text] [Related]
35. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique. Zhao X; Ning Q; Chai H; Ma Z J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215 [TBL] [Abstract][Full Text] [Related]
36. Prediction of protein modification sites of gamma-carboxylation using position specific scoring matrices based evolutionary information. Gao J; Zhang N; Ruan J Comput Biol Chem; 2013 Dec; 47():215-20. PubMed ID: 24184705 [TBL] [Abstract][Full Text] [Related]
37. NTyroSite: Computational Identification of Protein Nitrotyrosine Sites Using Sequence Evolutionary Features. Hasan MM; Khatun MS; Mollah MNH; Yong C; Dianjing G Molecules; 2018 Jul; 23(7):. PubMed ID: 29987232 [TBL] [Abstract][Full Text] [Related]
38. UbNiRF: A Hybrid Framework Based on Null Importances and Random Forest that Combines Multiple Features to Predict Ubiquitination Sites in Li X; Yuan Z; Chen Y Front Biosci (Landmark Ed); 2024 May; 29(5):197. PubMed ID: 38812315 [TBL] [Abstract][Full Text] [Related]
39. RF-GlutarySite: a random forest based predictor for glutarylation sites. Al-Barakati HJ; Saigo H; Newman RH; Kc DB Mol Omics; 2019 Jun; 15(3):189-204. PubMed ID: 31025681 [TBL] [Abstract][Full Text] [Related]
40. PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine. Hayat M; Tahir M Mol Biosyst; 2015 Aug; 11(8):2255-62. PubMed ID: 26054033 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]