BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28990716)

  • 1. Genome-wide characterization of Phytophthora infestans metabolism: a systems biology approach.
    Rodenburg SYA; Seidl MF; de Ridder D; Govers F
    Mol Plant Pathol; 2018 Jun; 19(6):1403-1413. PubMed ID: 28990716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic Model of the
    Rodenburg SYA; Seidl MF; Judelson HS; Vu AL; Govers F; de Ridder D
    mBio; 2019 Jul; 10(4):. PubMed ID: 31289172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo pyrimidine biosynthesis in the oomycete plant pathogen Phytophthora infestans.
    García-Bayona L; Garavito MF; Lozano GL; Vasquez JJ; Myers K; Fry WE; Bernal A; Zimmermann BH; Restrepo S
    Gene; 2014 Mar; 537(2):312-21. PubMed ID: 24361203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A predicted functional gene network for the plant pathogen Phytophthora infestans as a framework for genomic biology.
    Seidl MF; Schneider A; Govers F; Snel B
    BMC Genomics; 2013 Jul; 14():483. PubMed ID: 23865555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide prediction and functional validation of promoter motifs regulating gene expression in spore and infection stages of Phytophthora infestans.
    Roy S; Kagda M; Judelson HS
    PLoS Pathog; 2013 Mar; 9(3):e1003182. PubMed ID: 23516354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome alteration in Phytophthora infestans in response to phenazine-1-carboxylic acid production by Pseudomonas fluorescens strain LBUM223.
    Roquigny R; Novinscak A; Arseneault T; Joly DL; Filion M
    BMC Genomics; 2018 Jun; 19(1):474. PubMed ID: 29914352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatic inference of specific and general transcription factor binding sites in the plant pathogen Phytophthora infestans.
    Seidl MF; Wang RP; Van den Ackerveken G; Govers F; Snel B
    PLoS One; 2012; 7(12):e51295. PubMed ID: 23251489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinome of Phytophthora infestans reveals oomycete-specific innovations and links to other taxonomic groups.
    Judelson HS; Ah-Fong AM
    BMC Genomics; 2010 Dec; 11():700. PubMed ID: 21143935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncovering the Role of Metabolism in Oomycete-Host Interactions Using Genome-Scale Metabolic Models.
    Rodenburg SYA; Seidl MF; de Ridder D; Govers F
    Front Microbiol; 2021; 12():748178. PubMed ID: 34707596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Genome-wide analysis of the secreted proteins of phytophthora infestans].
    Zhou XG; Hou SM; Chen DW; Tao N; Ding YM; Sun ML; Zhang SS
    Yi Chuan; 2011 Jul; 33(7):785-93. PubMed ID: 22049694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of sterol acquisition in the oomycetes Saprolegnia parasitica and Phytophthora infestans.
    Dahlin P; Srivastava V; Ekengren S; McKee LS; Bulone V
    PLoS One; 2017; 12(2):e0170873. PubMed ID: 28152045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytophthora infestans Argonaute 1 binds microRNA and small RNAs from effector genes and transposable elements.
    Åsman AK; Fogelqvist J; Vetukuri RR; Dixelius C
    New Phytol; 2016 Aug; 211(3):993-1007. PubMed ID: 27010746
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Leesutthiphonchai W; Judelson HS
    Mol Plant Microbe Interact; 2019 Sep; 32(9):1077-1087. PubMed ID: 30908943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual RNA-Seq of Lysobacter capsici AZ78 - Phytophthora infestans interaction shows the implementation of attack strategies by the bacterium and unsuccessful oomycete defense responses.
    Tomada S; Sonego P; Moretto M; Engelen K; Pertot I; Perazzolli M; Puopolo G
    Environ Microbiol; 2017 Oct; 19(10):4113-4125. PubMed ID: 28745426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragmentation of tRNA in Phytophthora infestans asexual life cycle stages and during host plant infection.
    Åsman AK; Vetukuri RR; Jahan SN; Fogelqvist J; Corcoran P; Avrova AO; Whisson SC; Dixelius C
    BMC Microbiol; 2014 Dec; 14():308. PubMed ID: 25492044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signatures of selection and host-adapted gene expression of the Phytophthora infestans RNA silencing suppressor PSR2.
    de Vries S; von Dahlen JK; Uhlmann C; Schnake A; Kloesges T; Rose LE
    Mol Plant Pathol; 2017 Jan; 18(1):110-124. PubMed ID: 27503598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genome-scale metabolic model of potato late blight suggests a photosynthesis suppression mechanism.
    Botero K; Restrepo S; Pinzón A
    BMC Genomics; 2018 Dec; 19(Suppl 8):863. PubMed ID: 30537923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional profile of the carbohydrate esterase gene complement in Phytophthora infestans.
    Ospina-Giraldo MD; McWalters J; Seyer L
    Curr Genet; 2010 Dec; 56(6):495-506. PubMed ID: 20725833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease.
    Mosquera T; Alvarez MF; Jiménez-Gómez JM; Muktar MS; Paulo MJ; Steinemann S; Li J; Draffehn A; Hofmann A; Lübeck J; Strahwald J; Tacke E; Hofferbert HR; Walkemeier B; Gebhardt C
    PLoS One; 2016; 11(6):e0156254. PubMed ID: 27281327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.