These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 28990791)
21. Substrate product equilibrium on a reversible enzyme, triosephosphate isomerase. Rozovsky S; McDermott AE Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2080-5. PubMed ID: 17287353 [TBL] [Abstract][Full Text] [Related]
22. Simulation analysis of triose phosphate isomerase: conformational transition and catalysis. Karplus M; Evanseck JD; Joseph D; Bash PA; Field MJ Faraday Discuss; 1992; (93):239-48. PubMed ID: 1290934 [TBL] [Abstract][Full Text] [Related]
23. Reflections on the catalytic power of a TIM-barrel. Richard JP; Zhai X; Malabanan MM Bioorg Chem; 2014 Dec; 57():206-212. PubMed ID: 25092608 [TBL] [Abstract][Full Text] [Related]
24. Reaction of triosephosphate isomerase with L-glyceraldehyde 3-phosphate and triose 1,2-enediol 3-phosphate. Richard JP Biochemistry; 1985 Feb; 24(4):949-53. PubMed ID: 3995002 [TBL] [Abstract][Full Text] [Related]
25. Mechanistic implications of methylglyoxal synthase complexed with phosphoglycolohydroxamic acid as observed by X-ray crystallography and NMR spectroscopy. Marks GT; Harris TK; Massiah MA; Mildvan AS; Harrison DH Biochemistry; 2001 Jun; 40(23):6805-18. PubMed ID: 11389594 [TBL] [Abstract][Full Text] [Related]
26. Structure-Function Studies of Hydrophobic Residues That Clamp a Basic Glutamate Side Chain during Catalysis by Triosephosphate Isomerase. Richard JP; Amyes TL; Malabanan MM; Zhai X; Kim KJ; Reinhardt CJ; Wierenga RK; Drake EJ; Gulick AM Biochemistry; 2016 May; 55(21):3036-47. PubMed ID: 27149328 [TBL] [Abstract][Full Text] [Related]
27. Triosephosphate Isomerase: The Crippling Effect of the P168A/I172A Substitution at the Heart of an Enzyme Active Site. Hegazy R; Richard JP Biochemistry; 2023 Oct; 62(20):2916-2927. PubMed ID: 37768194 [TBL] [Abstract][Full Text] [Related]
28. Role of Loop-Clamping Side Chains in Catalysis by Triosephosphate Isomerase. Zhai X; Amyes TL; Richard JP J Am Chem Soc; 2015 Dec; 137(48):15185-97. PubMed ID: 26570983 [TBL] [Abstract][Full Text] [Related]
29. A paradigm for enzyme-catalyzed proton transfer at carbon: triosephosphate isomerase. Richard JP Biochemistry; 2012 Apr; 51(13):2652-61. PubMed ID: 22409228 [TBL] [Abstract][Full Text] [Related]
30. Kinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction's physiological significance. Richard JP Biochemistry; 1991 May; 30(18):4581-5. PubMed ID: 2021650 [TBL] [Abstract][Full Text] [Related]
31. Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism. Nickbarg EB; Davenport RC; Petsko GA; Knowles JR Biochemistry; 1988 Aug; 27(16):5948-60. PubMed ID: 2847777 [TBL] [Abstract][Full Text] [Related]
32. Atomic resolution crystallography of a complex of triosephosphate isomerase with a reaction-intermediate analog: new insight in the proton transfer reaction mechanism. Alahuhta M; Wierenga RK Proteins; 2010 Jun; 78(8):1878-88. PubMed ID: 20235230 [TBL] [Abstract][Full Text] [Related]
33. Liberation of the triosephosphate isomerase reaction intermediate and its trapping by isomerase, yeast aldolase, and methylglyoxal synthase. Iyengar R; Rose IA Biochemistry; 1981 Mar; 20(5):1229-35. PubMed ID: 7013791 [TBL] [Abstract][Full Text] [Related]
34. Modeling, mutagenesis, and structural studies on the fully conserved phosphate-binding loop (loop 8) of triosephosphate isomerase: toward a new substrate specificity. Norledge BV; Lambeir AM; Abagyan RA; Rottmann A; Fernandez AM; Filimonov VV; Peter MG; Wierenga RK Proteins; 2001 Feb; 42(3):383-9. PubMed ID: 11151009 [TBL] [Abstract][Full Text] [Related]
35. Energetics of triosephosphate isomerase: the appearance of solvent tritium in substrate glyceraldehyde 3-phosphate and in product. Fletcher SJ; Herlihy JM; Albery WJ; Knowles JR Biochemistry; 1976 Dec; 15(25):5612-7. PubMed ID: 999835 [TBL] [Abstract][Full Text] [Related]
36. Secondary H/T and D/T isotope effects in enzymatic enolization reactions. Coupled motion and tunneling in the triosephosphate isomerase reaction. Alston WC; Kanska M; Murray CJ Biochemistry; 1996 Oct; 35(39):12873-81. PubMed ID: 8841131 [TBL] [Abstract][Full Text] [Related]
37. Computer simulation and analysis of the reaction pathway of triosephosphate isomerase. Bash PA; Field MJ; Davenport RC; Petsko GA; Ringe D; Karplus M Biochemistry; 1991 Jun; 30(24):5826-32. PubMed ID: 2043624 [TBL] [Abstract][Full Text] [Related]
38. Crystallographic binding studies with triosephosphate isomerases: conformational changes induced by substrate and substrate-analogues. Wierenga RK; Borchert TV; Noble ME FEBS Lett; 1992 Jul; 307(1):34-9. PubMed ID: 1639191 [TBL] [Abstract][Full Text] [Related]
39. The structural basis for pseudoreversion of the E165D lesion by the secondary S96P mutation in triosephosphate isomerase depends on the positions of active site water molecules. Komives EA; Lougheed JC; Liu K; Sugio S; Zhang Z; Petsko GA; Ringe D Biochemistry; 1995 Oct; 34(41):13612-21. PubMed ID: 7577950 [TBL] [Abstract][Full Text] [Related]
40. Concentration of activated intermediates of the fructose-1,6-bisphosphate aldolase and triosephosphate isomerase reactions. Iyengar R; Rose IA Biochemistry; 1981 Mar; 20(5):1223-9. PubMed ID: 7013790 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]