BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28991213)

  • 1. Predictive QSAR Models for the Toxicity of Disinfection Byproducts.
    Qin L; Zhang X; Chen Y; Mo L; Zeng H; Liang Y
    Molecules; 2017 Oct; 22(10):. PubMed ID: 28991213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the cytotoxicity of disinfection by-products to Chinese hamster ovary by using linear quantitative structure-activity relationship models.
    Qin LT; Zhang X; Chen YH; Mo LY; Zeng HH; Liang YP; Lin H; Wang DQ
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16606-16615. PubMed ID: 30989598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative cytotoxicity of halogenated aromatic DBPs and implications of the corresponding developed QSAR model to toxicity mechanisms of those DBPs: Binding interactions between aromatic DBPs and catalase play an important role.
    Zhang Z; Zhu Q; Huang C; Yang M; Li J; Chen Y; Yang B; Zhao X
    Water Res; 2020 Mar; 170():115283. PubMed ID: 31739241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential carcinogenic hazards of non-regulated disinfection by-products: haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines.
    Bull RJ; Reckhow DA; Li X; Humpage AR; Joll C; Hrudey SE
    Toxicology; 2011 Aug; 286(1-3):1-19. PubMed ID: 21605618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UV direct photolysis of halogenated disinfection byproducts: Experimental study and QSAR modeling.
    Zhang Y; Xiao Y; Zhang Y; Lim TT
    Chemosphere; 2019 Nov; 235():719-725. PubMed ID: 31279122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Toxicity Analyses from Different Endpoints: Are New Cyclic Disinfection Byproducts (DBPs) More Toxic than Common Aliphatic DBPs?
    Wu Y; Wei W; Luo J; Pan Y; Yang M; Hua M; Chu W; Shuang C; Li A
    Environ Sci Technol; 2022 Jan; 56(1):194-207. PubMed ID: 34935353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on toxicity mechanism of halogenated aromatic disinfection by-products to zebrafish based on molecular docking and QSAR model.
    Li JJ; Yue YX; Shi SJ; Xue JZ
    Chemosphere; 2023 Nov; 341():139916. PubMed ID: 37633607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boiling of simulated tap water: effect on polar brominated disinfection byproducts, halogen speciation, and cytotoxicity.
    Pan Y; Zhang X; Wagner ED; Osiol J; Plewa MJ
    Environ Sci Technol; 2014; 48(1):149-56. PubMed ID: 24308807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioanalytical assessment of the formation of disinfection byproducts in a drinking water treatment plant.
    Neale PA; Antony A; Bartkow ME; Farré MJ; Heitz A; Kristiana I; Tang JY; Escher BI
    Environ Sci Technol; 2012 Sep; 46(18):10317-25. PubMed ID: 22873573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging Polar Phenolic Disinfection Byproducts Are High-Affinity Human Transthyretin Disruptors: An in Vitro and in Silico Study.
    Yang X; Ou W; Xi Y; Chen J; Liu H
    Environ Sci Technol; 2019 Jun; 53(12):7019-7028. PubMed ID: 31117532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR model for predicting the toxicity of organic compounds to fathead minnow.
    Jia Q; Zhao Y; Yan F; Wang Q
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35420-35428. PubMed ID: 30350137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSAR study of the acute toxicity to fathead minnow based on a large dataset.
    Wu X; Zhang Q; Hu J
    SAR QSAR Environ Res; 2016; 27(2):147-64. PubMed ID: 26911563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying unknown by-products in drinking water using comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry and in silico toxicity assessment.
    Li C; Wang D; Li N; Luo Q; Xu X; Wang Z
    Chemosphere; 2016 Nov; 163():535-543. PubMed ID: 27567153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches.
    de Morais E Silva L; Alves MF; Scotti L; Lopes WS; Scotti MT
    Ecotoxicol Environ Saf; 2018 May; 153():151-159. PubMed ID: 29427976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a QSAR model for acute toxicity.
    Pavan M; Netzeva TI; Worth AP
    SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four groups of new aromatic halogenated disinfection byproducts: effect of bromide concentration on their formation and speciation in chlorinated drinking water.
    Pan Y; Zhang X
    Environ Sci Technol; 2013 Feb; 47(3):1265-73. PubMed ID: 23298294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii.
    Yang M; Zhang X
    Environ Sci Technol; 2013 Oct; 47(19):10868-76. PubMed ID: 24024886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation and occurrence of new polar iodinated disinfection byproducts in drinking water.
    Pan Y; Li W; An H; Cui H; Wang Y
    Chemosphere; 2016 Feb; 144():2312-20. PubMed ID: 26606185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and toxicological characterization of halobenzoquinones, an emerging class of disinfection byproducts.
    Li J; Wang W; Moe B; Wang H; Li XF
    Chem Res Toxicol; 2015 Mar; 28(3):306-18. PubMed ID: 25588181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri.
    Escher BI; Baumer A; Bittermann K; Henneberger L; König M; Kühnert C; Klüver N
    Environ Sci Process Impacts; 2017 Mar; 19(3):414-428. PubMed ID: 28197603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.