These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28991478)

  • 1. Role of Terahertz (THz) Fluctuations in the Allosteric Properties of the PDZ Domains.
    Conti Nibali V; Morra G; Havenith M; Colombo G
    J Phys Chem B; 2017 Nov; 121(44):10200-10208. PubMed ID: 28991478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hidden electrostatic basis of dynamic allostery in a PDZ domain.
    Kumawat A; Chakrabarty S
    Proc Natl Acad Sci U S A; 2017 Jul; 114(29):E5825-E5834. PubMed ID: 28634294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms for allosteric activation of protease DegS by ligand binding and oligomerization as revealed from molecular dynamics simulations.
    Lu C; Stock G; Knecht V
    Proteins; 2016 Nov; 84(11):1690-1705. PubMed ID: 27556733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causality, transfer entropy, and allosteric communication landscapes in proteins with harmonic interactions.
    Hacisuleyman A; Erman B
    Proteins; 2017 Jun; 85(6):1056-1064. PubMed ID: 28241380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics-Markov State Model of Protein Ligand Binding and Allostery in CRIB-PDZ: Conformational Selection and Induced Fit.
    Thayer KM; Lakhani B; Beveridge DL
    J Phys Chem B; 2017 Jun; 121(22):5509-5514. PubMed ID: 28489401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Spectroscopy at Terahertz Frequencies.
    Lu J; Li X; Zhang Y; Hwang HY; Ofori-Okai BK; Nelson KA
    Top Curr Chem (Cham); 2018 Jan; 376(1):6. PubMed ID: 29362935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protonation-Induced Dynamic Allostery in PDZ Domain: Evidence of Perturbation-Independent Universal Response Network.
    Kumawat A; Chakrabarty S
    J Phys Chem Lett; 2020 Nov; 11(21):9026-9031. PubMed ID: 33043672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allosteric Signaling in PDZ Energetic Networks: Embedding Error Analysis.
    Cowan BS; Beveridge DL; Thayer KM
    J Phys Chem B; 2023 Jan; 127(3):623-633. PubMed ID: 36626697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing Protein Allostery as a Residue-Specific Concept via Residue Response Maps.
    Hayatshahi HS; Ahuactzin E; Tao P; Wang S; Liu J
    J Chem Inf Model; 2019 Nov; 59(11):4691-4705. PubMed ID: 31589429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved observation of protein allosteric communication.
    Buchenberg S; Sittel F; Stock G
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6804-E6811. PubMed ID: 28760989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Singular value decomposition for the correlation of atomic fluctuations with arbitrary angle.
    Yu M; Ma X; Cao H; Chong B; Lai L; Liu Z
    Proteins; 2018 Oct; 86(10):1075-1087. PubMed ID: 30019778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of Differential Allosteric Modulation in Homologous Proteins: Insights from the Analysis of Internal Dynamics and Energetics of PDZ Domains.
    Morra G; Genoni A; Colombo G
    J Chem Theory Comput; 2014 Dec; 10(12):5677-89. PubMed ID: 26583250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspective: Watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy.
    Xu Y; Havenith M
    J Chem Phys; 2015 Nov; 143(17):170901. PubMed ID: 26547148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.
    Kalescky R; Zhou H; Liu J; Tao P
    PLoS Comput Biol; 2016 Apr; 12(4):e1004893. PubMed ID: 27115535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supertertiary protein structure affects an allosteric network.
    Laursen L; Kliche J; Gianni S; Jemth P
    Proc Natl Acad Sci U S A; 2020 Sep; 117(39):24294-24304. PubMed ID: 32929026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seeking allosteric networks in PDZ domains.
    Gautier C; Laursen L; Jemth P; Gianni S
    Protein Eng Des Sel; 2018 Oct; 31(10):367-373. PubMed ID: 30690500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Change in allosteric network affects binding affinities of PDZ domains: analysis through perturbation response scanning.
    Gerek ZN; Ozkan SB
    PLoS Comput Biol; 2011 Oct; 7(10):e1002154. PubMed ID: 21998559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time observation of ligand-induced allosteric transitions in a PDZ domain.
    Bozovic O; Zanobini C; Gulzar A; Jankovic B; Buhrke D; Post M; Wolf S; Stock G; Hamm P
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26031-26039. PubMed ID: 33020277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based identification of CaMKIIα-interacting MUPP1 PDZ domains and rational design of peptide ligands to target such interaction in human fertilization.
    Zhang YL; Han ZF; Sun YP
    Amino Acids; 2016 Jun; 48(6):1509-21. PubMed ID: 26984442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using THz time-scale infrared spectroscopy to examine the role of collective, thermal fluctuations in the formation of myoglobin allosteric communication pathways and ligand specificity.
    Woods KN
    Soft Matter; 2014 Jun; 10(24):4387-402. PubMed ID: 24801988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.