These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28991491)

  • 41. An ultrasensitive signal-on electrochemical aptasensor via target-induced conjunction of split aptamer fragments.
    Chen J; Zhang J; Li J; Yang HH; Fu F; Chen G
    Biosens Bioelectron; 2010 Jan; 25(5):996-1000. PubMed ID: 19818593
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells.
    Wang K; He MQ; Zhai FH; He RH; Yu YL
    Talanta; 2017 May; 166():87-92. PubMed ID: 28213264
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A signal-on electrochemical aptasensor for rapid detection of aflatoxin B1 based on competition with complementary DNA.
    Wang C; Li Y; Zhao Q
    Biosens Bioelectron; 2019 Nov; 144():111641. PubMed ID: 31494505
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model.
    Li B; Wang Y; Wei H; Dong S
    Biosens Bioelectron; 2008 Feb; 23(7):965-70. PubMed ID: 17997091
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simple and sensitive aptasensor based on quantum dot-coated silica nanospheres and the gold screen-printed electrode.
    Li Y; Deng L; Deng C; Nie Z; Yang M; Si S
    Talanta; 2012 Sep; 99():637-42. PubMed ID: 22967605
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing.
    Xiao Y; Lai RY; Plaxco KW
    Nat Protoc; 2007; 2(11):2875-80. PubMed ID: 18007622
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors.
    Miodek A; Regan EM; Bhalla N; Hopkins NA; Goodchild SA; Estrela P
    Sensors (Basel); 2015 Sep; 15(10):25015-32. PubMed ID: 26426017
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A new electrochemical aptasensor based on a dual-signaling strategy and supersandwich assay.
    Wei B; Zhang J; Wang H; Xia F
    Analyst; 2016 Jul; 141(14):4313-8. PubMed ID: 27188283
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum.
    Ferapontova EE; Olsen EM; Gothelf KV
    J Am Chem Soc; 2008 Apr; 130(13):4256-8. PubMed ID: 18324816
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrochemical aptamer sensor for small molecule assays.
    Liu X; Li W; Xu X; Zhou J; Nie Z
    Methods Mol Biol; 2012; 800():119-32. PubMed ID: 21964786
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: Fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor.
    Roushani M; Shahdost-Fard F
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():128-135. PubMed ID: 27524004
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dual-aptamer-based voltammetric biosensor for the Mycobacterium tuberculosis antigen MPT64 by using a gold electrode modified with a peroxidase loaded composite consisting of gold nanoparticles and a Zr(IV)/terephthalate metal-organic framework.
    Li N; Huang X; Sun D; Yu W; Tan W; Luo Z; Chen Z
    Mikrochim Acta; 2018 Nov; 185(12):543. PubMed ID: 30421038
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrochemical endotoxin aptasensor based on a metal-organic framework labeled analytical platform.
    Duan Y; Wang N; Huang Z; Dai H; Xu L; Sun S; Ma H; Lin M
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110501. PubMed ID: 31923942
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A generic amplification strategy for electrochemical aptasensors using a non-enzymatic nanoceria tag.
    Bulbul G; Hayat A; Andreescu S
    Nanoscale; 2015 Aug; 7(31):13230-8. PubMed ID: 26186604
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Construction of a highly sensitive signal-on aptasensor based on gold nanoparticles/functionalized silica nanoparticles for selective detection of tryptophan.
    Hashkavayi AB; Raoof JB; Ojani R
    Anal Bioanal Chem; 2017 Nov; 409(27):6429-6438. PubMed ID: 28852807
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Graphene Oxide Based Recyclable in Vivo Device for Amperometric Monitoring of Interferon-γ in Inflammatory Mice.
    Cao C; Jin R; Wei H; Yang W; Goldys EM; Hutchinson MR; Liu S; Chen X; Yang G; Liu G
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33078-33087. PubMed ID: 30199621
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interferon-γ detection in point of care diagnostics: Short review.
    Yerrapragada R M; Mampallil D
    Talanta; 2022 Aug; 245():123428. PubMed ID: 35427946
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly sensitive host-guest mode homogenous electrochemical thrombin signal amplification aptasensor based on tetraferrocene label.
    Xu H; Cui H; Yin Z; Wei G; Liao F; Shu Q; Ma G; Cheng L; Hong N; Xiong J; Fan H
    Bioelectrochemistry; 2020 Aug; 134():107522. PubMed ID: 32278295
    [TBL] [Abstract][Full Text] [Related]  

  • 59. "Turn-on" Fluorescent Aptasensor Based on AIEgen Labeling for the Localization of IFN-γ in Live Cells.
    Ma K; Zhang F; Sayyadi N; Chen W; Anwer AG; Care A; Xu B; Tian W; Goldys EM; Liu G
    ACS Sens; 2018 Feb; 3(2):320-326. PubMed ID: 29308890
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of an Electrochemical Aptasensor Composed of Multifunctional DNA Three-Way Junction on Au Microgap Electrode for Interferon Gamma Detection in Human Serum.
    Noh S; Kim J; Park C; Min J; Lee T
    Biomedicines; 2021 Jun; 9(6):. PubMed ID: 34207431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.