These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 28991799)
1. Application of leaching tests on phosphogypsum by infiltration-percolation. Hassoune H; Lahhit M; Khalid A; Lachehab A Water Sci Technol; 2017 Oct; 76(7-8):1844-1851. PubMed ID: 28991799 [TBL] [Abstract][Full Text] [Related]
2. Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes. Pérez-López R; Alvarez-Valero AM; Nieto JM J Hazard Mater; 2007 Sep; 148(3):745-50. PubMed ID: 17683858 [TBL] [Abstract][Full Text] [Related]
3. Role of phosphogypsum and NPK amendments on the retention or leaching of metals in different soils. Ammar R; Kanbar HJ; Kazpard V; Wazne M; El Samrani AG; Amacha N; Saad Z; Chou L J Environ Manage; 2016 Aug; 178():20-29. PubMed ID: 27131954 [TBL] [Abstract][Full Text] [Related]
4. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain. Rentería-Villalobos M; Vioque I; Mantero J; Manjón G J Hazard Mater; 2010 Sep; 181(1-3):193-203. PubMed ID: 20537794 [TBL] [Abstract][Full Text] [Related]
5. Lixiviation of natural radionuclides and heavy metals in tropical soils amended with phosphogypsum. Nisti MB; Saueia CR; Malheiro LH; Groppo GH; Mazzilli BP J Environ Radioact; 2015 Jun; 144():120-6. PubMed ID: 25841114 [TBL] [Abstract][Full Text] [Related]
6. Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): high mining potential and implications for environmental protection. El Zrelli R; Rabaoui L; Daghbouj N; Abda H; Castet S; Josse C; van Beek P; Souhaut M; Michel S; Bejaoui N; Courjault-Radé P Environ Sci Pollut Res Int; 2018 May; 25(15):14690-14702. PubMed ID: 29532384 [TBL] [Abstract][Full Text] [Related]
7. Effects of seawater mixing on the mobility of trace elements in acid phosphogypsum leachates. Papaslioti EM; Pérez-López R; Parviainen A; Sarmiento AM; Nieto JM; Marchesi C; Delgado-Huertas A; Garrido CJ Mar Pollut Bull; 2018 Feb; 127():695-703. PubMed ID: 29475713 [TBL] [Abstract][Full Text] [Related]
8. Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods. Santos AJ; Mazzilli BP; Fávaro DI; Silva PS J Environ Radioact; 2006; 87(1):52-61. PubMed ID: 16375997 [TBL] [Abstract][Full Text] [Related]
9. Leaching potential of heavy metals (Cd, Ni, Pb, Cu and Zn) from acidic sandy soil amended with dolomite phosphate rock (DPR) fertilizers. Chen GC; He ZL; Stoffella PJ; Yang XE; Yu S; Yang JY; Calvert DV J Trace Elem Med Biol; 2006; 20(2):127-33. PubMed ID: 16785053 [TBL] [Abstract][Full Text] [Related]
11. Various soil amendments and environmental wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Shaheen SM; Shams MS; Khalifa MR; El-Dali MA; Rinklebe J Ecotoxicol Environ Saf; 2017 Aug; 142():375-387. PubMed ID: 28441624 [TBL] [Abstract][Full Text] [Related]
12. Leachable 226Ra in Philippine phosphogypsum and its implication in groundwater contamination in Isabel, Leyte, Philippines. Cañete SJ; Palad LJ; Enriquez EB; Garcia TY; Yulo-Nazarea T Environ Monit Assess; 2008 Jul; 142(1-3):337-44. PubMed ID: 17874311 [TBL] [Abstract][Full Text] [Related]
13. Total contents and sequential extraction of heavy metals in soils irrigated with wastewater, Akaki, Ethiopia. Fitamo D; Itana F; Olsson M Environ Manage; 2007 Feb; 39(2):178-93. PubMed ID: 17160509 [TBL] [Abstract][Full Text] [Related]
14. Case study: heavy metals and fluoride contents in the materials of Syrian phosphate industry and in the vicinity of phosphogypsum piles. Al Attar L; Al-Oudat M; Shamali K; Abdul Ghany B; Kanakri S Environ Technol; 2012; 33(1-3):143-52. PubMed ID: 22519097 [TBL] [Abstract][Full Text] [Related]
15. Applying physicochemical approaches to control phosphogypsum heavy metal releases in aquatic environment. Ammar R; El Samrani AG; Kazpard V; Bassil J; Lartiges B; Saad Z; Chou L Environ Sci Pollut Res Int; 2013 Dec; 20(12):9014-25. PubMed ID: 23764982 [TBL] [Abstract][Full Text] [Related]
16. Leaching Characteristics of Calcium and Strontium from Phosphogypsum Under Acid Rain. Wang M; Luo H; Chen Y; Yang J Bull Environ Contam Toxicol; 2018 Feb; 100(2):310-315. PubMed ID: 29177696 [TBL] [Abstract][Full Text] [Related]
17. Stress-strain relationship and seismic performance of cast-in-situ phosphogypsum. Zhang Y; Dai S; Weng W; Huang J; Su Y; Cai Y J Appl Biomater Funct Mater; 2017 Jun; 15(Suppl. 1):e62-e68. PubMed ID: 28657108 [TBL] [Abstract][Full Text] [Related]
18. Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO₂ sequestration. Contreras M; Pérez-López R; Gázquez MJ; Morales-Flórez V; Santos A; Esquivias L; Bolívar JP Waste Manag; 2015 Nov; 45():412-9. PubMed ID: 26209345 [TBL] [Abstract][Full Text] [Related]
19. Nuclide migration and the environmental radiochemistry of Florida phosphogypsum. Burnett WC; Elzerman AW J Environ Radioact; 2001; 54(1):27-51. PubMed ID: 11379072 [TBL] [Abstract][Full Text] [Related]