BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28991801)

  • 1. Migration and speciation of heavy metal in salinized mine tailings affected by iron mining.
    Zhang X; Yang H; Cui Z
    Water Sci Technol; 2017 Oct; 76(7-8):1867-1874. PubMed ID: 28991801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review: mine tailings in an African tropical environment-mechanisms for the bioavailability of heavy metals in soils.
    Kaninga BK; Chishala BH; Maseka KK; Sakala GM; Lark MR; Tye A; Watts MJ
    Environ Geochem Health; 2020 Apr; 42(4):1069-1094. PubMed ID: 31134395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China.
    Liu G; Wang J; Zhang E; Hou J; Liu X
    Environ Sci Pollut Res Int; 2016 May; 23(9):8709-20. PubMed ID: 26801928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Speciation and bioavailability of heavy metals in paddy soil irrigated by acid mine drainage].
    Xu C; Xia BC; Wu HN; Lin XF; Qiu RL
    Huan Jing Ke Xue; 2009 Mar; 30(3):900-6. PubMed ID: 19432348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation.
    Cele EN; Maboeta M
    J Environ Manage; 2016 Jan; 165():167-174. PubMed ID: 26433357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings.
    Lee SH; Ji W; Lee WS; Koo N; Koh IH; Kim MS; Park JS
    J Environ Manage; 2014 Jun; 139():15-21. PubMed ID: 24681360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field-scale study of the influence of differing remediation strategies on trace metal geochemistry in metal mine tailings from the Irish Midlands.
    Perkins WT; Bird G; Jacobs SR; Devoy C
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5592-608. PubMed ID: 26578371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Distribution characteristic and assessment of soil heavy metal pollution in the iron mining of Baotou in Inner Mongolia].
    Guo W; Zhao RX; Zhang J; Bao YY; Wang H; Yang M; Sun XL; Jin F
    Huan Jing Ke Xue; 2011 Oct; 32(10):3099-105. PubMed ID: 22279930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leachability of arsenic and heavy metals from mine tailings of abandoned metal mines.
    Lim M; Han GC; Ahn JW; You KS; Kim HS
    Int J Environ Res Public Health; 2009 Nov; 6(11):2865-79. PubMed ID: 20049231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Spatial distribution and ecological significance of heavy metals in soils from Chatian mercury mining deposit, western Hunan province].
    Sun HF; Li YH; Ji YF; Yang LS; Wang WY
    Huan Jing Ke Xue; 2009 Apr; 30(4):1159-65. PubMed ID: 19545023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An eco-friendly method for heavy metal removal from mine tailings.
    Arab F; Mulligan CN
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):16202-16216. PubMed ID: 29594884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical fraction, leachability, and bioaccessibility of heavy metals in contaminated soils, Northeast China.
    Yutong Z; Qing X; Shenggao L
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):24107-24114. PubMed ID: 27640054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution, speciation, and risk assessment of selected metals in the gold and iron mine soils of the catchment area of Miyun Reservoir, Beijing, China.
    Huang X; Zhu Y; Ji H
    Environ Monit Assess; 2013 Oct; 185(10):8525-45. PubMed ID: 23644666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.
    Liu YG; Zhou M; Zeng GM; Li X; Xu WH; Fan T
    J Hazard Mater; 2007 Mar; 141(1):202-8. PubMed ID: 16887262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Analysis on the Distribution Characteristics and Influence Mechanism of Migration and Transformation of Heavy Metals in Mining Wasteland].
    Wei HB; Luo M; Xiang L; Zha LS; Yang HL
    Huan Jing Ke Xue; 2023 Jun; 44(6):3573-3584. PubMed ID: 37309972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaching of heavy metals from lead-zinc mine tailings and the subsequent migration and transformation characteristics in paddy soil.
    Sun R; Gao Y; Yang Y
    Chemosphere; 2022 Mar; 291(Pt 1):132792. PubMed ID: 34748803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid.
    Wang S; Mulligan CN
    Chemosphere; 2009 Jan; 74(2):274-9. PubMed ID: 18977015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The spatial distribution and accumulation characteristics of heavy metals in steppe soils around three mining areas in Xilinhot in Inner Mongolia, China.
    Gao Y; Liu H; Liu G
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):25416-25430. PubMed ID: 28932981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.
    Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.