BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 28991958)

  • 1. From supramolecular polymers to multi-component biomaterials.
    Goor OJGM; Hendrikse SIS; Dankers PYW; Meijer EW
    Chem Soc Rev; 2017 Oct; 46(21):6621-6637. PubMed ID: 28991958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smart biomaterials design for tissue engineering and regenerative medicine.
    Furth ME; Atala A; Van Dyke ME
    Biomaterials; 2007 Dec; 28(34):5068-73. PubMed ID: 17706763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
    Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P
    Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular biomaterials.
    Webber MJ; Appel EA; Meijer EW; Langer R
    Nat Mater; 2016 Jan; 15(1):13-26. PubMed ID: 26681596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable Control in Extracellular Matrix-mimicking Polymer Hydrogels.
    Hof KS; Bastings MMC
    Chimia (Aarau); 2017 Jun; 71(6):342-348. PubMed ID: 28662736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches.
    Shigemitsu H; Hamachi I
    Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular Hydrogels Based on DNA Self-Assembly.
    Shao Y; Jia H; Cao T; Liu D
    Acc Chem Res; 2017 Apr; 50(4):659-668. PubMed ID: 28299927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways.
    Brugmans MCP; Sӧntjens SHM; Cox MAJ; Nandakumar A; Bosman AW; Mes T; Janssen HM; Bouten CVC; Baaijens FPT; Driessen-Mol A
    Acta Biomater; 2015 Nov; 27():21-31. PubMed ID: 26316031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable biomaterials from synthetic, sequence-controlled polymers.
    Austin MJ; Rosales AM
    Biomater Sci; 2019 Jan; 7(2):490-505. PubMed ID: 30628589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.
    Lutolf MP; Hubbell JA
    Nat Biotechnol; 2005 Jan; 23(1):47-55. PubMed ID: 15637621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The host response to naturally-derived extracellular matrix biomaterials.
    Morris AH; Stamer DK; Kyriakides TR
    Semin Immunol; 2017 Feb; 29():72-91. PubMed ID: 28274693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleobase-Interaction-Directed Biomimetic Supramolecular Self-Assembly.
    Sikder A; Esen C; O'Reilly RK
    Acc Chem Res; 2022 Jun; 55(12):1609-1619. PubMed ID: 35671460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introducing Hyaluronic Acid into Supramolecular Polymers and Hydrogels.
    Varela-Aramburu S; Su L; Mosquera J; Morgese G; Schoenmakers SMC; Cardinaels R; Palmans ARA; Meijer EW
    Biomacromolecules; 2021 Nov; 22(11):4633-4641. PubMed ID: 34662095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular polymeric biomaterials.
    Mann JL; Yu AC; Agmon G; Appel EA
    Biomater Sci; 2017 Dec; 6(1):10-37. PubMed ID: 29164196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.
    Sun H; Meng F; Dias AA; Hendriks M; Feijen J; Zhong Z
    Biomacromolecules; 2011 Jun; 12(6):1937-55. PubMed ID: 21469742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional biomaterials for cell fate regulation.
    Zhang C; Xie B; Zou Y; Zhu D; Lei L; Zhao D; Nie H
    Adv Drug Deliv Rev; 2018 Jul; 132():33-56. PubMed ID: 29964080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realizing tissue integration with supramolecular hydrogels.
    Feliciano AJ; van Blitterswijk C; Moroni L; Baker MB
    Acta Biomater; 2021 Apr; 124():1-14. PubMed ID: 33508507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastin-inspired supramolecular hydrogels: a multifaceted extracellular matrix protein in biomedical engineering.
    Sharma A; Sharma P; Roy S
    Soft Matter; 2021 Mar; 17(12):3266-3290. PubMed ID: 33730140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: A review.
    Kumar A; Sood A; Agrawal G; Thakur S; Thakur VK; Tanaka M; Mishra YK; Christie G; Mostafavi E; Boukherroub R; Hutmacher DW; Han SS
    Int J Biol Macromol; 2023 Aug; 247():125606. PubMed ID: 37406894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application.
    Song Z; Han Z; Lv S; Chen C; Chen L; Yin L; Cheng J
    Chem Soc Rev; 2017 Oct; 46(21):6570-6599. PubMed ID: 28944387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.