These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 28991963)
1. Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG-peptide hydrogels. Arkenberg MR; Lin CC Biomater Sci; 2017 Oct; 5(11):2231-2240. PubMed ID: 28991963 [TBL] [Abstract][Full Text] [Related]
2. Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells. Liu HY; Greene T; Lin TY; Dawes CS; Korc M; Lin CC Acta Biomater; 2017 Jan; 48():258-269. PubMed ID: 27769941 [TBL] [Abstract][Full Text] [Related]
3. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation. Arkenberg MR; Moore DM; Lin CC Acta Biomater; 2019 Jan; 83():83-95. PubMed ID: 30415064 [TBL] [Abstract][Full Text] [Related]
4. Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids. Nguyen HD; Lin CC Acta Biomater; 2024 Mar; 177():203-215. PubMed ID: 38354874 [TBL] [Abstract][Full Text] [Related]
5. Dynamic PEG-Peptide Hydrogels via Visible Light and FMN-Induced Tyrosine Dimerization. Liu HY; Nguyen HD; Lin CC Adv Healthc Mater; 2018 Nov; 7(22):e1800954. PubMed ID: 30369100 [TBL] [Abstract][Full Text] [Related]
6. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine. Shih H; Liu HY; Lin CC Biomater Sci; 2017 Feb; 5(3):589-599. PubMed ID: 28174779 [TBL] [Abstract][Full Text] [Related]
7. PEG-based hydrogels as an in vitro encapsulation platform for testing controlled beta-cell microenvironments. Weber LM; He J; Bradley B; Haskins K; Anseth KS Acta Biomater; 2006 Jan; 2(1):1-8. PubMed ID: 16701853 [TBL] [Abstract][Full Text] [Related]
8. Rational Design of Hydrogel Networks with Dynamic Mechanical Properties to Mimic Matrix Remodeling. Wiley KL; Sutherland BP; Ogunnaike BA; Kloxin AM Adv Healthc Mater; 2022 Apr; 11(7):e2101947. PubMed ID: 34936227 [TBL] [Abstract][Full Text] [Related]
9. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Liu SQ; Tian Q; Hedrick JL; Po Hui JH; Ee PL; Yang YY Biomaterials; 2010 Oct; 31(28):7298-307. PubMed ID: 20615545 [TBL] [Abstract][Full Text] [Related]
10. Biomimetic stiffening of cell-laden hydrogels via sequential thiol-ene and hydrazone click reactions. Chang CY; Johnson HC; Babb O; Fishel ML; Lin CC Acta Biomater; 2021 Aug; 130():161-171. PubMed ID: 34087443 [TBL] [Abstract][Full Text] [Related]
11. Modulation of Huh7.5 spheroid formation and functionality using modified PEG-based hydrogels of different stiffness. Lee BH; Kim MH; Lee JH; Seliktar D; Cho NJ; Tan LP PLoS One; 2015; 10(2):e0118123. PubMed ID: 25692976 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of versatile poly(xylitol sebacate)-co-poly(ethylene glycol) hydrogels through multifunctional crosslinkers and dynamic bonds for wound healing. Yeh YY; Lin YY; Wang TT; Yeh YJ; Chiu TH; Wang R; Bai MY; Yeh YC Acta Biomater; 2023 Oct; 170():344-359. PubMed ID: 37607615 [TBL] [Abstract][Full Text] [Related]
13. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Capanema NSV; Mansur AAP; de Jesus AC; Carvalho SM; de Oliveira LC; Mansur HS Int J Biol Macromol; 2018 Jan; 106():1218-1234. PubMed ID: 28851645 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the crosslinking kinetics of multi-arm poly(ethylene glycol) hydrogels formed via Michael-type addition. Kim J; Kong YP; Niedzielski SM; Singh RK; Putnam AJ; Shikanov A Soft Matter; 2016 Feb; 12(7):2076-85. PubMed ID: 26750719 [TBL] [Abstract][Full Text] [Related]
15. SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Patterson J; Hubbell JA Biomaterials; 2011 Feb; 32(5):1301-10. PubMed ID: 21040970 [TBL] [Abstract][Full Text] [Related]
16. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Wang C; Tong X; Yang F Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441 [TBL] [Abstract][Full Text] [Related]
17. Tumor Spheroid Fabrication and Encapsulation in Polyethylene Glycol Hydrogels for Studying Spheroid-Matrix Interactions. Bruns J; Nejat S; Faber A; Zustiak SP J Vis Exp; 2023 Sep; (199):. PubMed ID: 37811942 [TBL] [Abstract][Full Text] [Related]
18. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness. Keeney M; Onyiah S; Zhang Z; Tong X; Han LH; Yang F Biomaterials; 2013 Dec; 34(37):9657-65. PubMed ID: 24011715 [TBL] [Abstract][Full Text] [Related]
19. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. Mabry KM; Lawrence RL; Anseth KS Biomaterials; 2015 May; 49():47-56. PubMed ID: 25725554 [TBL] [Abstract][Full Text] [Related]