BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28991963)

  • 1. Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG-peptide hydrogels.
    Arkenberg MR; Lin CC
    Biomater Sci; 2017 Oct; 5(11):2231-2240. PubMed ID: 28991963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells.
    Liu HY; Greene T; Lin TY; Dawes CS; Korc M; Lin CC
    Acta Biomater; 2017 Jan; 48():258-269. PubMed ID: 27769941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation.
    Arkenberg MR; Moore DM; Lin CC
    Acta Biomater; 2019 Jan; 83():83-95. PubMed ID: 30415064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids.
    Nguyen HD; Lin CC
    Acta Biomater; 2024 Mar; 177():203-215. PubMed ID: 38354874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic PEG-Peptide Hydrogels via Visible Light and FMN-Induced Tyrosine Dimerization.
    Liu HY; Nguyen HD; Lin CC
    Adv Healthc Mater; 2018 Nov; 7(22):e1800954. PubMed ID: 30369100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine.
    Shih H; Liu HY; Lin CC
    Biomater Sci; 2017 Feb; 5(3):589-599. PubMed ID: 28174779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design of Hydrogel Networks with Dynamic Mechanical Properties to Mimic Matrix Remodeling.
    Wiley KL; Sutherland BP; Ogunnaike BA; Kloxin AM
    Adv Healthc Mater; 2022 Apr; 11(7):e2101947. PubMed ID: 34936227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEG-based hydrogels as an in vitro encapsulation platform for testing controlled beta-cell microenvironments.
    Weber LM; He J; Bradley B; Haskins K; Anseth KS
    Acta Biomater; 2006 Jan; 2(1):1-8. PubMed ID: 16701853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage.
    Liu SQ; Tian Q; Hedrick JL; Po Hui JH; Ee PL; Yang YY
    Biomaterials; 2010 Oct; 31(28):7298-307. PubMed ID: 20615545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic stiffening of cell-laden hydrogels via sequential thiol-ene and hydrazone click reactions.
    Chang CY; Johnson HC; Babb O; Fishel ML; Lin CC
    Acta Biomater; 2021 Aug; 130():161-171. PubMed ID: 34087443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of Huh7.5 spheroid formation and functionality using modified PEG-based hydrogels of different stiffness.
    Lee BH; Kim MH; Lee JH; Seliktar D; Cho NJ; Tan LP
    PLoS One; 2015; 10(2):e0118123. PubMed ID: 25692976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of versatile poly(xylitol sebacate)-co-poly(ethylene glycol) hydrogels through multifunctional crosslinkers and dynamic bonds for wound healing.
    Yeh YY; Lin YY; Wang TT; Yeh YJ; Chiu TH; Wang R; Bai MY; Yeh YC
    Acta Biomater; 2023 Oct; 170():344-359. PubMed ID: 37607615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications.
    Capanema NSV; Mansur AAP; de Jesus AC; Carvalho SM; de Oliveira LC; Mansur HS
    Int J Biol Macromol; 2018 Jan; 106():1218-1234. PubMed ID: 28851645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the crosslinking kinetics of multi-arm poly(ethylene glycol) hydrogels formed via Michael-type addition.
    Kim J; Kong YP; Niedzielski SM; Singh RK; Putnam AJ; Shikanov A
    Soft Matter; 2016 Feb; 12(7):2076-85. PubMed ID: 26750719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels.
    Patterson J; Hubbell JA
    Biomaterials; 2011 Feb; 32(5):1301-10. PubMed ID: 21040970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor Spheroid Fabrication and Encapsulation in Polyethylene Glycol Hydrogels for Studying Spheroid-Matrix Interactions.
    Bruns J; Nejat S; Faber A; Zustiak SP
    J Vis Exp; 2023 Sep; (199):. PubMed ID: 37811942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness.
    Keeney M; Onyiah S; Zhang Z; Tong X; Han LH; Yang F
    Biomaterials; 2013 Dec; 34(37):9657-65. PubMed ID: 24011715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment.
    Mabry KM; Lawrence RL; Anseth KS
    Biomaterials; 2015 May; 49():47-56. PubMed ID: 25725554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(ethylene glycol)-crosslinked gelatin hydrogel substrates with conjugated bioactive peptides influence endothelial cell behavior.
    Su J; Satchell SC; Wertheim JA; Shah RN
    Biomaterials; 2019 May; 201():99-112. PubMed ID: 30807988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.