These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28992087)

  • 1. Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana.
    Bloomer RH; Dean C
    J Exp Bot; 2017 Nov; 68(20):5439-5452. PubMed ID: 28992087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of flowering signals in winter-annual Arabidopsis.
    Michaels SD; Himelblau E; Kim SY; Schomburg FM; Amasino RM
    Plant Physiol; 2005 Jan; 137(1):149-56. PubMed ID: 15618421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene regulatory variation mediates flowering responses to vernalization along an altitudinal gradient in Arabidopsis.
    Suter L; Rüegg M; Zemp N; Hennig L; Widmer A
    Plant Physiol; 2014 Dec; 166(4):1928-42. PubMed ID: 25339407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flowering Locus C's Lessons: Conserved Chromatin Switches Underpinning Developmental Timing and Adaptation.
    Hepworth J; Dean C
    Plant Physiol; 2015 Aug; 168(4):1237-45. PubMed ID: 26149571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental and genetic interactions reveal FLOWERING LOCUS C as a modulator of the natural variation for the plasticity of flowering in Arabidopsis.
    Méndez-Vigo B; Savic M; Ausín I; Ramiro M; Martín B; Picó FX; Alonso-Blanco C
    Plant Cell Environ; 2016 Feb; 39(2):282-94. PubMed ID: 26173848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential expression of genes important for adaptation in Capsella bursa-pastoris (Brassicaceae).
    Slotte T; Holm K; McIntyre LM; Lagercrantz U; Lascoux M
    Plant Physiol; 2007 Sep; 145(1):160-73. PubMed ID: 17631524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Standing genetic variation in FRIGIDA mediates experimental evolution of flowering time in Arabidopsis.
    Scarcelli N; Kover PX
    Mol Ecol; 2009 May; 18(9):2039-49. PubMed ID: 19317844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis.
    Shindo C; Aranzana MJ; Lister C; Baxter C; Nicholls C; Nordborg M; Dean C
    Plant Physiol; 2005 Jun; 138(2):1163-73. PubMed ID: 15908596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic architecture of flowering time differentiation between locally adapted populations of Arabidopsis thaliana.
    Grillo MA; Li C; Hammond M; Wang L; Schemske DW
    New Phytol; 2013 Mar; 197(4):1321-1331. PubMed ID: 23311994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis.
    He Y; Doyle MR; Amasino RM
    Genes Dev; 2004 Nov; 18(22):2774-84. PubMed ID: 15520273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vernalization and epigenetics: how plants remember winter.
    Sung S; Amasino RM
    Curr Opin Plant Biol; 2004 Feb; 7(1):4-10. PubMed ID: 14732435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal shift in timing of vernalization as an adaptation to extreme winter.
    Duncan S; Holm S; Questa J; Irwin J; Grant A; Dean C
    Elife; 2015 Jul; 4():. PubMed ID: 26203563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA.
    Stinchcombe JR; Weinig C; Ungerer M; Olsen KM; Mays C; Halldorsdottir SS; Purugganan MD; Schmitt J
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4712-7. PubMed ID: 15070783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the molecular basis of flowering time variation in Arabidopsis accessions.
    Gazzani S; Gendall AR; Lister C; Dean C
    Plant Physiol; 2003 Jun; 132(2):1107-14. PubMed ID: 12805638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel natural alleles at FLC and LVR loci account for enhanced vernalization responses in Arabidopsis thaliana.
    Sánchez-Bermejo E; Méndez-Vigo B; Picó FX; Martínez-Zapater JM; Alonso-Blanco C
    Plant Cell Environ; 2012 Sep; 35(9):1672-84. PubMed ID: 22494398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3.
    Sung S; Amasino RM
    Nature; 2004 Jan; 427(6970):159-64. PubMed ID: 14712276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vernalization and Floral Transition in Autumn Drive Winter Annual Life History in Oilseed Rape.
    O'Neill CM; Lu X; Calderwood A; Tudor EH; Robinson P; Wells R; Morris R; Penfield S
    Curr Biol; 2019 Dec; 29(24):4300-4306.e2. PubMed ID: 31813609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural variation in the temperature range permissive for vernalization in accessions of Arabidopsis thaliana.
    Wollenberg AC; Amasino RM
    Plant Cell Environ; 2012 Dec; 35(12):2181-91. PubMed ID: 22639792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glyma11g13220, a homolog of the vernalization pathway gene VERNALIZATION 1 from soybean [Glycine max (L.) Merr.], promotes flowering in Arabidopsis thaliana.
    Lü J; Suo H; Yi R; Ma Q; Nian H
    BMC Plant Biol; 2015 Sep; 15():232. PubMed ID: 26420429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergence of annual and perennial species in the Brassicaceae and the contribution of cis-acting variation at FLC orthologues.
    Kiefer C; Severing E; Karl R; Bergonzi S; Koch M; Tresch A; Coupland G
    Mol Ecol; 2017 Jul; 26(13):3437-3457. PubMed ID: 28261921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.