These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 28992108)

  • 1. Defining the Role of the MADS-Box Gene, Zea Agamous-like1, a Target of Selection During Maize Domestication.
    Wills DM; Fang Z; York AM; Holland JB; Doebley JF
    J Hered; 2018 Mar; 109(3):333-338. PubMed ID: 28992108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation.
    Guo L; Wang X; Zhao M; Huang C; Li C; Li D; Yang CJ; York AM; Xue W; Xu G; Liang Y; Chen Q; Doebley JF; Tian F
    Curr Biol; 2018 Sep; 28(18):3005-3015.e4. PubMed ID: 30220503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population genomics of Zea species identifies selection signatures during maize domestication and adaptation.
    Xu G; Zhang X; Chen W; Zhang R; Li Z; Wen W; Warburton ML; Li J; Li H; Yang X
    BMC Plant Biol; 2022 Feb; 22(1):72. PubMed ID: 35180846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genetic architecture of complex traits in teosinte (Zea mays ssp. parviglumis): new evidence from association mapping.
    Weber AL; Briggs WH; Rucker J; Baltazar BM; de Jesús Sánchez-Gonzalez J; Feng P; Buckler ES; Doebley J
    Genetics; 2008 Oct; 180(2):1221-32. PubMed ID: 18791250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex genetic architecture underlies maize tassel domestication.
    Xu G; Wang X; Huang C; Xu D; Li D; Tian J; Chen Q; Wang C; Liang Y; Wu Y; Yang X; Tian F
    New Phytol; 2017 Apr; 214(2):852-864. PubMed ID: 28067953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of selection at the ramosa1 locus during maize domestication.
    Sigmon B; Vollbrecht E
    Mol Ecol; 2010 Apr; 19(7):1296-311. PubMed ID: 20196812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic screening for artificial selection during domestication and improvement in maize.
    Yamasaki M; Wright SI; McMullen MD
    Ann Bot; 2007 Nov; 100(5):967-73. PubMed ID: 17704539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection During Maize Domestication Targeted a Gene Network Controlling Plant and Inflorescence Architecture.
    Studer AJ; Wang H; Doebley JF
    Genetics; 2017 Oct; 207(2):755-765. PubMed ID: 28754660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining the Role of prolamin-box binding factor1 Gene During Maize Domestication.
    Lang Z; Wills DM; Lemmon ZH; Shannon LM; Bukowski R; Wu Y; Messing J; Doebley JF
    J Hered; 2014; 105(4):576-582. PubMed ID: 24683184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MADS-box genes of maize: frequent targets of selection during domestication.
    Zhao Q; Weber AL; McMullen MD; Guill K; Doebley J
    Genet Res (Camb); 2011 Feb; 93(1):65-75. PubMed ID: 21144126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genetic architecture of teosinte catalyzed and constrained maize domestication.
    Yang CJ; Samayoa LF; Bradbury PJ; Olukolu BA; Xue W; York AM; Tuholski MR; Wang W; Daskalska LL; Neumeyer MA; Sanchez-Gonzalez JJ; Romay MC; Glaubitz JC; Sun Q; Buckler ES; Holland JB; Doebley JF
    Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5643-5652. PubMed ID: 30842282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection versus demography: a multilocus investigation of the domestication process in maize.
    Tenaillon MI; U'Ren J; Tenaillon O; Gaut BS
    Mol Biol Evol; 2004 Jul; 21(7):1214-25. PubMed ID: 15014173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An adaptive teosinte
    Barnes AC; Rodríguez-Zapata F; Juárez-Núñez KA; Gates DJ; Janzen GM; Kur A; Wang L; Jensen SE; Estévez-Palmas JM; Crow TM; Kavi HS; Pil HD; Stokes RL; Knizner KT; Aguilar-Rangel MR; Demesa-Arévalo E; Skopelitis T; Pérez-Limón S; Stutts WL; Thompson P; Chiu YC; Jackson D; Muddiman DC; Fiehn O; Runcie D; Buckler ES; Ross-Ibarra J; Hufford MB; Sawers RJH; Rellán-Álvarez R
    Proc Natl Acad Sci U S A; 2022 Jul; 119(27):e2100036119. PubMed ID: 35771940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement.
    Liu J; Fernie AR; Yan J
    Plant Commun; 2020 Jan; 1(1):100010. PubMed ID: 33404535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a natural allelic series at the maize domestication locus teosinte branched1.
    Studer AJ; Doebley JF
    Genetics; 2012 Jul; 191(3):951-8. PubMed ID: 22505628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the teosinte transcriptome reveals adaptive sequence divergence during maize domestication.
    Huang J; Gao Y; Jia H; Zhang Z
    Mol Ecol Resour; 2016 Nov; 16(6):1465-1477. PubMed ID: 26990495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin of the naked grains of maize.
    Wang H; Nussbaum-Wagler T; Li B; Zhao Q; Vigouroux Y; Faller M; Bomblies K; Lukens L; Doebley JF
    Nature; 2005 Aug; 436(7051):714-9. PubMed ID: 16079849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence That the Origin of Naked Kernels During Maize Domestication Was Caused by a Single Amino Acid Substitution in tga1.
    Wang H; Studer AJ; Zhao Q; Meeley R; Doebley JF
    Genetics; 2015 Jul; 200(3):965-74. PubMed ID: 25943393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations.
    Liu Z; Garcia A; McMullen MD; Flint-Garcia SA
    G3 (Bethesda); 2016 Aug; 6(8):2523-30. PubMed ID: 27317774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maize domestication and gene interaction.
    Stitzer MC; Ross-Ibarra J
    New Phytol; 2018 Oct; 220(2):395-408. PubMed ID: 30035321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.