These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 28992405)
1. High-Strength Films Consisted of Oriented Chitosan Nanofibers for Guiding Cell Growth. Zhu K; Duan J; Guo J; Wu S; Lu A; Zhang L Biomacromolecules; 2017 Dec; 18(12):3904-3912. PubMed ID: 28992405 [TBL] [Abstract][Full Text] [Related]
2. Optimization of electrospinning process & parameters for producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering. Singh YP; Dasgupta S; Nayar S; Bhaskar R J Biomater Sci Polym Ed; 2020 Apr; 31(6):781-803. PubMed ID: 31958253 [TBL] [Abstract][Full Text] [Related]
3. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. Koosha M; Mirzadeh H J Biomed Mater Res A; 2015 Sep; 103(9):3081-93. PubMed ID: 25727934 [TBL] [Abstract][Full Text] [Related]
4. Chitosan and collagen layer-by-layer assembly modified oriented nanofibers and their biological properties. Li D; Dai F; Li H; Wang C; Shi X; Cheng Y; Deng H Carbohydr Polym; 2021 Feb; 254():117438. PubMed ID: 33357911 [TBL] [Abstract][Full Text] [Related]
5. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation. Ho MH; Liao MH; Lin YL; Lai CH; Lin PI; Chen RM Int J Nanomedicine; 2014; 9():4293-304. PubMed ID: 25246786 [TBL] [Abstract][Full Text] [Related]
6. Potential of electrospun core-shell structured gelatin-chitosan nanofibers for biomedical applications. Jalaja K; Naskar D; Kundu SC; James NR Carbohydr Polym; 2016 Jan; 136():1098-107. PubMed ID: 26572452 [TBL] [Abstract][Full Text] [Related]
7. Phosphoprotein/chitosan electrospun nanofibrous scaffold for biomineralization. Liang H; Sheng F; Zhou B; Pei Y; Li B; Li J Int J Biol Macromol; 2017 Sep; 102():218-224. PubMed ID: 28392386 [TBL] [Abstract][Full Text] [Related]
9. Facile preparation of a strong chitosan-silk biocomposite film. Huang J; Qin J; Zhang P; Chen X; You X; Zhang F; Zuo B; Yao M Carbohydr Polym; 2020 Feb; 229():115515. PubMed ID: 31826522 [TBL] [Abstract][Full Text] [Related]
10. Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties. Zou W; Chen Y; Zhang X; Li J; Sun L; Gui Z; Du B; Chen S Carbohydr Polym; 2018 Dec; 202():246-257. PubMed ID: 30286998 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and characterization of heparin-grafted poly-L-lactic acid-chitosan core-shell nanofibers scaffold for vascular gasket. Wang T; Ji X; Jin L; Feng Z; Wu J; Zheng J; Wang H; Xu ZW; Guo L; He N ACS Appl Mater Interfaces; 2013 May; 5(9):3757-63. PubMed ID: 23586670 [TBL] [Abstract][Full Text] [Related]
12. Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers. Yuan H; Li B; Liang K; Lou X; Zhang Y Biomed Mater; 2014 Aug; 9(5):055001. PubMed ID: 25135109 [TBL] [Abstract][Full Text] [Related]
13. Biocompatible core-shell electrospun nanofibers as potential application for chemotherapy against ovary cancer. Yan E; Fan Y; Sun Z; Gao J; Hao X; Pei S; Wang C; Sun L; Zhang D Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():217-23. PubMed ID: 24907754 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and characterization of biodegradable KH560 crosslinked chitin hydrogels with high toughness and good biocompatibility. Chen B; Wu S; Ye Q Carbohydr Polym; 2021 May; 259():117707. PubMed ID: 33673987 [TBL] [Abstract][Full Text] [Related]
15. Mechanical enhancement and in vitro biocompatibility of nanofibrous collagen-chitosan scaffolds for tissue engineering. Zou F; Li R; Jiang J; Mo X; Gu G; Guo Z; Chen Z J Biomater Sci Polym Ed; 2017 Dec; 28(18):2255-2270. PubMed ID: 29034774 [TBL] [Abstract][Full Text] [Related]
16. Stabilization of chitosan based electrospun nanofibers through a simple and safe method. Fadaie M; Mirzaei E; Asvar Z; Azarpira N Mater Sci Eng C Mater Biol Appl; 2019 May; 98():369-380. PubMed ID: 30813038 [TBL] [Abstract][Full Text] [Related]
17. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Soni B; Hassan EB; Schilling MW; Mahmoud B Carbohydr Polym; 2016 Oct; 151():779-789. PubMed ID: 27474625 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Gomes S; Rodrigues G; Martins G; Henriques C; Silva JC Int J Biol Macromol; 2017 Sep; 102():1174-1185. PubMed ID: 28487195 [TBL] [Abstract][Full Text] [Related]
19. Muscle-inspired double-network hydrogels with robust mechanical property, biocompatibility and ionic conductivity. Geng L; Hu S; Cui M; Wu J; Huang A; Shi S; Peng X Carbohydr Polym; 2021 Jun; 262():117936. PubMed ID: 33838813 [TBL] [Abstract][Full Text] [Related]
20. Triethyl orthoformate mediated a novel crosslinking method for the preparation of hydrogels for tissue engineering applications: characterization and in vitro cytocompatibility analysis. Yar M; Shahzad S; Siddiqi SA; Mahmood N; Rauf A; Anwar MS; Chaudhry AA; Rehman Iu Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():154-64. PubMed ID: 26249576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]