These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 28992451)

  • 21. Take-over again: Investigating multimodal and directional TORs to get the driver back into the loop.
    Petermeijer S; Bazilinskyy P; Bengler K; de Winter J
    Appl Ergon; 2017 Jul; 62():204-215. PubMed ID: 28411731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-related differences in effects of non-driving related tasks on takeover performance in automated driving.
    Wu Y; Kihara K; Hasegawa K; Takeda Y; Sato T; Akamatsu M; Kitazaki S
    J Safety Res; 2020 Feb; 72():231-238. PubMed ID: 32199568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How to warn drivers in various safety-critical situations - Different strategies, different reactions.
    Winkler S; Kazazi J; Vollrath M
    Accid Anal Prev; 2018 Aug; 117():410-426. PubMed ID: 29703596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing drivers' response during automated driver support system failures with non-driving tasks.
    Shen S; Neyens DM
    J Safety Res; 2017 Jun; 61():149-155. PubMed ID: 28454860
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analyzing crowdsourced ratings of speech-based take-over requests for automated driving.
    Bazilinskyy P; de Winter JCF
    Appl Ergon; 2017 Oct; 64():56-64. PubMed ID: 28610814
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of takeover request lead time on drivers' situation awareness for manually exiting from freeways: A web-based study on level 3 automated vehicles.
    Tan X; Zhang Y
    Accid Anal Prev; 2022 Apr; 168():106593. PubMed ID: 35180465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Non-Driving Related Task Modalities on Takeover Performance in Highly Automated Driving.
    Wandtner B; Schömig N; Schmidt G
    Hum Factors; 2018 Sep; 60(6):870-881. PubMed ID: 29617161
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Task Interruption and Control Recovery Strategies After Take-Over Requests Emphasize Need for Measures of Situation Awareness.
    Vogelpohl T; Gehlmann F; Vollrath M
    Hum Factors; 2020 Nov; 62(7):1190-1211. PubMed ID: 31403839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Promote or inhibit: An inverted U-shaped effect of workload on driver takeover performance.
    Ma S; Zhang W; Yang Z; Kang C; Wu C; Chai C; Shi J; Li H
    Traffic Inj Prev; 2020; 21(7):482-487. PubMed ID: 32822218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Speech-based E-mail and driver behavior: effects of an in-vehicle message system interface.
    Jamson AH; Westerman SJ; Hockey GR; Carsten OM
    Hum Factors; 2004; 46(4):625-39. PubMed ID: 15709325
    [TBL] [Abstract][Full Text] [Related]  

  • 31. User expectations of partial driving automation capabilities and their effect on information design preferences in the vehicle.
    Ulahannan A; Cain R; Thompson S; Skrypchuk L; Mouzakitis A; Jennings P; Birrell S
    Appl Ergon; 2020 Jan; 82():102969. PubMed ID: 31600714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Driver response and recovery following automation initiated disengagement in real-world hands-free driving.
    Gershon P; Mehler B; Reimer B
    Traffic Inj Prev; 2023; 24(4):356-361. PubMed ID: 36988583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Driving with a Congestion Assistant; mental workload and acceptance.
    Brookhuis KA; van Driel CJ; Hof T; van Arem B; Hoedemaeker M
    Appl Ergon; 2009 Nov; 40(6):1019-25. PubMed ID: 18823875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Age differences in the takeover of vehicle control and engagement in non-driving-related activities in simulated driving with conditional automation.
    Clark H; Feng J
    Accid Anal Prev; 2017 Sep; 106():468-479. PubMed ID: 27686942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Does assisted driving behavior lead to safety-critical encounters with unequipped vehicles' drivers?
    Preuk K; Stemmler E; Schießl C; Jipp M
    Accid Anal Prev; 2016 Oct; 95(Pt A):149-56. PubMed ID: 27442594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drivers' gaze patterns when resuming control with a head-up-display: Effects of automation level and time budget.
    Xu C; Louw TL; Merat N; Li P; Hu M; Li Y
    Accid Anal Prev; 2023 Feb; 180():106905. PubMed ID: 36508949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Definition of simulated driving tests for the evaluation of drivers' reactions and responses.
    Bartolozzi R; Frendo F
    Traffic Inj Prev; 2014; 15(3):302-9. PubMed ID: 24372503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring drivers' mental workload and visual demand while using an in-vehicle HMI for eco-safe driving.
    Li X; Vaezipour A; Rakotonirainy A; Demmel S; Oviedo-Trespalacios O
    Accid Anal Prev; 2020 Oct; 146():105756. PubMed ID: 32919220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly automated driving, secondary task performance, and driver state.
    Merat N; Jamson AH; Lai FC; Carsten O
    Hum Factors; 2012 Oct; 54(5):762-71. PubMed ID: 23156621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring the effectiveness of a digital voice assistant to maintain driver alertness in partially automated vehicles.
    Mahajan K; Large DR; Burnett G; Velaga NR
    Traffic Inj Prev; 2021; 22(5):378-383. PubMed ID: 33881365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.