These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 28992570)
1. The use of new chemically modified cellulose for heavy metal ion adsorption. Fakhre NA; Ibrahim BM J Hazard Mater; 2018 Feb; 343():324-331. PubMed ID: 28992570 [TBL] [Abstract][Full Text] [Related]
2. Synergistic adsorption of heavy metal ions and organic pollutants by supramolecular polysaccharide composite materials from cellulose, chitosan and crown ether. Mututuvari TM; Tran CD J Hazard Mater; 2014 Jan; 264():449-59. PubMed ID: 24333678 [TBL] [Abstract][Full Text] [Related]
3. Adsorption behavior of copper ions using crown ether-modified konjac glucomannan. Guan L; Kang H; Liu W; Tian D Int J Biol Macromol; 2021 Apr; 177():48-57. PubMed ID: 33610605 [TBL] [Abstract][Full Text] [Related]
4. Chitosan-cellulose composite materials: preparation, characterization and application for removal of microcystin. Tran CD; Duri S; Delneri A; Franko M J Hazard Mater; 2013 May; 252-253():355-66. PubMed ID: 23542326 [TBL] [Abstract][Full Text] [Related]
5. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80. Pehlivan E; Altun T J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738 [TBL] [Abstract][Full Text] [Related]
6. Renewable Modified Cellulose Bearing Chelating Schiff Base for Adsorptive Removal of Heavy Metal Ions and Antibacterial Action. Saravanan R; Ravikumar L Water Environ Res; 2017 Jul; 89(7):629-640. PubMed ID: 28641673 [TBL] [Abstract][Full Text] [Related]
7. Supramolecular composite materials from cellulose, chitosan, and cyclodextrin: facile preparation and their selective inclusion complex formation with endocrine disruptors. Duri S; Tran CD Langmuir; 2013 Apr; 29(16):5037-49. PubMed ID: 23517477 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, structure and antimicrobial property of green composites from cellulose, wool, hair and chicken feather. Tran CD; Prosenc F; Franko M; Benzi G Carbohydr Polym; 2016 Oct; 151():1269-1276. PubMed ID: 27474680 [TBL] [Abstract][Full Text] [Related]
9. Microhydration effects on the encapsulation of potassium ion by dibenzo-18-crown-6. Inokuchi Y; Ebata T; Rizzo TR; Boyarkin OV J Am Chem Soc; 2014 Feb; 136(5):1815-24. PubMed ID: 24422522 [TBL] [Abstract][Full Text] [Related]
10. Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Zhou D; Zhang L; Zhou J; Guo S Water Res; 2004 Jun; 38(11):2643-50. PubMed ID: 15207594 [TBL] [Abstract][Full Text] [Related]
11. Polysaccharide Ecocomposite Materials: Synthesis, Characterization and Application for Removal of Pollutants and Bacteria. Duri S; El-Zahab B; Tran CD ECS Trans; 2013; 50(11):573-594. PubMed ID: 26203313 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of metal-organic frameworks@cellulose aerogels composite materials for removal of heavy metal ions in water. Lei C; Gao J; Ren W; Xie Y; Abdalkarim SYH; Wang S; Ni Q; Yao J Carbohydr Polym; 2019 Feb; 205():35-41. PubMed ID: 30446114 [TBL] [Abstract][Full Text] [Related]
13. Novel heavy-metal adsorption material: ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions. Ju XJ; Zhang SB; Zhou MY; Xie R; Yang L; Chu LY J Hazard Mater; 2009 Aug; 167(1-3):114-8. PubMed ID: 19179009 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of cellulose-based adsorbent and its application in heavy metal ions removal. Wang J; Liu M; Duan C; Sun J; Xu Y Carbohydr Polym; 2019 Feb; 206():837-843. PubMed ID: 30553391 [TBL] [Abstract][Full Text] [Related]
15. A novel biodegradable β-cyclodextrin-based hydrogel for the removal of heavy metal ions. Huang Z; Wu Q; Liu S; Liu T; Zhang B Carbohydr Polym; 2013 Sep; 97(2):496-501. PubMed ID: 23911476 [TBL] [Abstract][Full Text] [Related]
16. Phragmites australis: a novel biosorbent for the removal of heavy metals from aqueous solution. Southichak B; Nakano K; Nomura M; Chiba N; Nishimura O Water Res; 2006 Jul; 40(12):2295-302. PubMed ID: 16766011 [TBL] [Abstract][Full Text] [Related]
17. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). Saeed A; Iqbal M; Akhtar MW J Hazard Mater; 2005 Jan; 117(1):65-73. PubMed ID: 15621354 [TBL] [Abstract][Full Text] [Related]
18. Induced Fit of Crown Cavity to Ammonium Ion Guests and Photoinduced Intracavity Reactions: Cold Gas-Phase Spectroscopy of Dibenzo-18-Crown-6 Complexes with NH Kubo M; Kida M; Muramatsu S; Inokuchi Y J Phys Chem A; 2020 Apr; 124(16):3228-3241. PubMed ID: 32255649 [TBL] [Abstract][Full Text] [Related]
19. Microhydration of Dibenzo-18-Crown-6 Complexes with K Inokuchi Y; Ebata T; Rizzo TR J Phys Chem A; 2018 Apr; 122(15):3754-3763. PubMed ID: 29582664 [TBL] [Abstract][Full Text] [Related]
20. Adsorption of natural composite sandwich-like nanofibrous mats for heavy metals in aquatic environment. Wu Y; Qiu X; Cao S; Chen J; Shi X; Du Y; Deng H J Colloid Interface Sci; 2019 Mar; 539():533-544. PubMed ID: 30611049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]