BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28992594)

  • 1. Electrochemistry and electron paramagnetic resonance spectroscopy of cytochrome c and its heme-disrupted analogs.
    Novak D; Mojovic M; Pavicevic A; Zatloukalova M; Hernychova L; Bartosik M; Vacek J
    Bioelectrochemistry; 2018 Feb; 119():136-141. PubMed ID: 28992594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A possible role for the covalent heme-protein linkage in cytochrome c revealed via comparison of N-acetylmicroperoxidase-8 and a synthetic, monohistidine-coordinated heme peptide.
    Cowley AB; Lukat-Rodgers GS; Rodgers KR; Benson DR
    Biochemistry; 2004 Feb; 43(6):1656-66. PubMed ID: 14769043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote Perturbations in Tertiary Contacts Trigger Ligation of Lysine to the Heme Iron in Cytochrome c.
    Gu J; Shin DW; Pletneva EV
    Biochemistry; 2017 Jun; 56(23):2950-2966. PubMed ID: 28474881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-enhanced resonance Raman spectroscopy and spectroscopy study of redox-induced conformational equilibrium of cytochrome c adsorbed on DNA-modified metal electrode.
    Jiang X; Wang Y; Qu X; Dong S
    Biosens Bioelectron; 2006 Jul; 22(1):49-55. PubMed ID: 16414257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How does reorganization energy change upon protein unfolding? Monitoring the structural perturbations in the heme cavity of cytochrome c.
    Shafiey H; Ghourchian H; Mogharrab N
    Biophys Chem; 2008 May; 134(3):225-31. PubMed ID: 18325656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the redox state dependent gamma(CH) vibrational modes of the c-type heme.
    Dörr S; Wolpert M; Hellwig P
    Biopolymers; 2006 Jul; 82(4):349-52. PubMed ID: 16419062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct electrochemical and spectroscopic assessment of heme integrity in multiphoton photo-cross-linked cytochrome C structures.
    Lyon JL; Hill RT; Shear JB; Stevenson KJ
    Anal Chem; 2007 Mar; 79(6):2303-11. PubMed ID: 17288462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational status of cytochrome c upon N-homocysteinylation: Implications to cytochrome c release.
    Sharma GS; Singh LR
    Arch Biochem Biophys; 2017 Jan; 614():23-27. PubMed ID: 28003096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox activity distinguishes solid-state electron transport from solution-based electron transfer in a natural and artificial protein: cytochrome C and hemin-doped human serum albumin.
    Amdursky N; Ferber D; Pecht I; Sheves M; Cahen D
    Phys Chem Chem Phys; 2013 Oct; 15(40):17142-9. PubMed ID: 24008341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural changes and picosecond to second dynamics of cytochrome c in interaction with nitric oxide in ferrous and ferric redox states.
    Kruglik SG; Yoo BK; Lambry JC; Martin JL; Negrerie M
    Phys Chem Chem Phys; 2017 Aug; 19(32):21317-21334. PubMed ID: 28759066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct electrochemical analyses of human cytochromes b5 with a mutated heme pocket showed a good correlation between their midpoint and half wave potentials.
    Aono T; Sakamoto Y; Miura M; Takeuchi F; Hori H; Tsubaki M
    J Biomed Sci; 2010 Dec; 17(1):90. PubMed ID: 21129218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome
    Liew FN; Brandys MA; Biswas S; Nguyen JN; Rahmawati M; Nevala M; Elmore BO; Hendrich MP; Kim HJ
    Biochemistry; 2020 Feb; 59(5):704-716. PubMed ID: 31887031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heme plane orientation dependent direct electron transfer of cytochrome c at SAMs/Au electrodes with different wettability.
    Wang GX; Bao WJ; Wang M; Xia XH
    Chem Commun (Camb); 2012 Nov; 48(88):10859-61. PubMed ID: 23023396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide inhibits peroxidase activity of cytochrome c.cardiolipin complex and blocks cardiolipin oxidation.
    Vlasova II; Tyurin VA; Kapralov AA; Kurnikov IV; Osipov AN; Potapovich MV; Stoyanovsky DA; Kagan VE
    J Biol Chem; 2006 May; 281(21):14554-62. PubMed ID: 16543234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Configurational changes of heme followed by cytochrome c folding reaction.
    Choi J; Cho DW; Tojo S; Fujitsuka M; Majima T
    Mol Biosyst; 2015 Jan; 11(1):218-22. PubMed ID: 25358103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of ligand-field parameters by heme ruffling in cytochromes c revealed by EPR spectroscopy.
    Can M; Zoppellaro G; Andersson KK; Bren KL
    Inorg Chem; 2011 Dec; 50(23):12018-24. PubMed ID: 22044358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electrochemistry of cytochrome c at modified Si(100) electrodes.
    Ciampi S; Gooding JJ
    Chemistry; 2010 May; 16(20):5961-8. PubMed ID: 20397246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Heme Dynamics of Ferric Cytochrome c in Different Environments: Electronic, Vibrational, and Conformational Relaxation.
    Karunakaran V
    Chemphyschem; 2015 Dec; 16(18):3974-83. PubMed ID: 26416435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyethylene glycol promotes autoxidation of cytochrome c.
    Sato W; Uchida T; Saio T; Ishimori K
    Biochim Biophys Acta Gen Subj; 2018 Jun; 1862(6):1339-1349. PubMed ID: 29540304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.