BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

601 related articles for article (PubMed ID: 28992630)

  • 1. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing.
    Chen L; Shi G; Shen J; Peng B; Zhang B; Wang Y; Bian F; Wang J; Li D; Qian Z; Xu G; Liu G; Zeng J; Zhang L; Yang Y; Zhou G; Wu M; Jin W; Li J; Fang H
    Nature; 2017 Oct; 550(7676):380-383. PubMed ID: 28992630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise control of the interlayer spacing between graphene sheets by hydrated cations.
    Yang Y; Mu L; Chen L; Shi G; Fang H
    Phys Chem Chem Phys; 2019 Apr; 21(14):7623-7629. PubMed ID: 30907908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the Interlayer Spacings in Dry Graphene Oxide Membranes via Ions.
    Liang S; Mu L; Chen L; Jiang J; Yang Y; Fang H
    Chem Asian J; 2020 Aug; 15(15):2346-2349. PubMed ID: 32212381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing the role of interlayer spacing in radioactive-ion sieving of functionalized graphene membranes.
    Mao C; Shao H; Huang C; Chen L; Ma L; Ren Y; Tu M; Wang H; Gu J; Ma H; Xu G
    J Hazard Mater; 2024 Aug; 475():134795. PubMed ID: 38878427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water flow in carbon-based nanoporous membranes impacted by interactions between hydrated ions and aromatic rings.
    Liu J; Shi G; Fang H
    Nanotechnology; 2017 Feb; 28(8):084004. PubMed ID: 28114118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Ion Sieving of Graphene Membranes through the Control of Nitrogen-Bonding Configuration.
    Song JH; Yu HW; Ham MH; Kim IS
    Nano Lett; 2018 Sep; 18(9):5506-5513. PubMed ID: 30080971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of cation trans-membrane transport in GO-MoS
    Sun J; Chen Y; Hu C; Liu H; Qu J
    Chemosphere; 2019 May; 222():156-164. PubMed ID: 30703655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling Interlayer Spacing of Graphene Oxide Membranes by External Pressure Regulation.
    Li W; Wu W; Li Z
    ACS Nano; 2018 Sep; 12(9):9309-9317. PubMed ID: 30183255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the presence of cations on the water and salt dynamics inside layered graphene oxide (GO) membranes.
    Gogoi A; Anki Reddy K; Mondal PK
    Nanoscale; 2020 Apr; 12(13):7273-7283. PubMed ID: 32196024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-Dependent Ion Adsorption in Graphene Oxide Membranes.
    Jin X; Wen X; Lim S; Joshi R
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34202268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable sieving of ions using graphene oxide membranes.
    Abraham J; Vasu KS; Williams CD; Gopinadhan K; Su Y; Cherian CT; Dix J; Prestat E; Haigh SJ; Grigorieva IV; Carbone P; Geim AK; Nair RR
    Nat Nanotechnol; 2017 Jul; 12(6):546-550. PubMed ID: 28369049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swelling of Graphene Oxide Membranes in Aqueous Solution: Characterization of Interlayer Spacing and Insight into Water Transport Mechanisms.
    Zheng S; Tu Q; Urban JJ; Li S; Mi B
    ACS Nano; 2017 Jun; 11(6):6440-6450. PubMed ID: 28570812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-inspired graphene-derived membranes with strain-controlled interlayer spacing.
    Gao E; Xu Z
    Nanoscale; 2018 May; 10(18):8585-8590. PubMed ID: 29696272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene Oxide Membranes with Strong Stability in Aqueous Solutions and Controllable Lamellar Spacing.
    Xi YH; Hu JQ; Liu Z; Xie R; Ju XJ; Wang W; Chu LY
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15557-66. PubMed ID: 27214685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interlocked Graphene Oxide Provides Narrow Channels for Effective Water Desalination through Forward Osmosis.
    Padmavathy N; Behera SS; Pathan S; Das Ghosh L; Bose S
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7566-7575. PubMed ID: 30681825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective Separation of CO
    Jin X; Foller T; Wen X; Ghasemian MB; Wang F; Zhang M; Bustamante H; Sahajwalla V; Kumar P; Kim H; Lee GH; Kalantar-Zadeh K; Joshi R
    Adv Mater; 2020 Apr; 32(17):e1907580. PubMed ID: 32181550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane of Functionalized Reduced Graphene Oxide Nanoplates with Angstrom-Level Channels.
    Lee B; Li K; Yoon HS; Yoon J; Mok Y; Lee Y; Lee HH; Kim YH
    Sci Rep; 2016 Jun; 6():28052. PubMed ID: 27306853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyoxometalate Clusters Confined in Reduced Graphene Oxide Membranes for Effective Ion Sieving and Desalination.
    Yang Y; Zhao WL; Liu Y; Wang Q; Song Z; Zhuang Q; Chen W; Song YF
    Adv Sci (Weinh); 2024 Jun; ():e2402018. PubMed ID: 38887207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions.
    Sun P; Zheng F; Zhu M; Song Z; Wang K; Zhong M; Wu D; Little RB; Xu Z; Zhu H
    ACS Nano; 2014 Jan; 8(1):850-9. PubMed ID: 24401025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Strategy to Fabricate Cation-Cross-linked Graphene Oxide Membrane with High Aqueous Stability and High Separation Performance.
    Lv XB; Xie R; Ji JY; Liu Z; Wen XY; Liu LY; Hu JQ; Ju XJ; Wang W; Chu LY
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56269-56280. PubMed ID: 33264002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.