BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28992705)

  • 1. Importance of Scaffold Flexibility/Rigidity in the Design and Directed Evolution of Artificial Metallo-β-lactamases.
    Song WJ; Yu J; Tezcan FA
    J Am Chem Soc; 2017 Nov; 139(46):16772-16779. PubMed ID: 28992705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A designed supramolecular protein assembly with in vivo enzymatic activity.
    Song WJ; Tezcan FA
    Science; 2014 Dec; 346(6216):1525-8. PubMed ID: 25525249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, Function of Serine and Metallo-β-lactamases and their Inhibitors.
    Salahuddin P; Kumar A; Khan AU
    Curr Protein Pept Sci; 2018; 19(2):130-144. PubMed ID: 28745223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Construction of Functional Supramolecular Metalloprotein Assemblies.
    Churchfield LA; Tezcan FA
    Acc Chem Res; 2019 Feb; 52(2):345-355. PubMed ID: 30698941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism.
    Zhang H; Hao Q
    FASEB J; 2011 Aug; 25(8):2574-82. PubMed ID: 21507902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asp120Asn mutation impairs the catalytic activity of NDM-1 metallo-β-lactamase: experimental and computational study.
    Chen J; Chen H; Zhu T; Zhou D; Zhang F; Lao X; Zheng H
    Phys Chem Chem Phys; 2014 Apr; 16(14):6709-16. PubMed ID: 24584846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Delhi metallo-β-lactamase I: substrate binding and catalytic mechanism.
    Zheng M; Xu D
    J Phys Chem B; 2013 Oct; 117(39):11596-607. PubMed ID: 24025144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of Zn
    de Arruda EGR; Rocha BA; Barrionuevo MVF; Aðalsteinsson HM; Galdino FE; Loh W; Lima FA; Abbehausen C
    Dalton Trans; 2019 Feb; 48(9):2900-2916. PubMed ID: 30462122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of adaptability in metal coordination geometry and active-site loop conformation among B1 metallo-beta-lactamases .
    González JM; Buschiazzo A; Vila AJ
    Biochemistry; 2010 Sep; 49(36):7930-8. PubMed ID: 20677753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and evolution of new catalytic activity with an existing protein scaffold.
    Park HS; Nam SH; Lee JK; Yoon CN; Mannervik B; Benkovic SJ; Kim HS
    Science; 2006 Jan; 311(5760):535-8. PubMed ID: 16439663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grafting a new metal ligand in the cocatalytic site of B. cereus metallo-beta-lactamase: structural flexibility without loss of activity.
    Rasia RM; Ceolín M; Vila AJ
    Protein Sci; 2003 Jul; 12(7):1538-46. PubMed ID: 12824499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of changes in the L3 loop of the active site in the evolution of enzymatic activity of VIM-type metallo-beta-lactamases.
    Merino M; Pérez-Llarena FJ; Kerff F; Poza M; Mallo S; Rumbo-Feal S; Beceiro A; Juan C; Oliver A; Bou G
    J Antimicrob Chemother; 2010 Sep; 65(9):1950-4. PubMed ID: 20624761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming differences: The catalytic mechanism of metallo-β-lactamases.
    Meini MR; Llarrull LI; Vila AJ
    FEBS Lett; 2015 Nov; 589(22):3419-32. PubMed ID: 26297824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallo-beta-lactamases: two binding sites for one catalytic metal ion?
    Heinz U; Adolph HW
    Cell Mol Life Sci; 2004 Nov; 61(22):2827-39. PubMed ID: 15558212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of a cold-active alkaline phosphatase by imipenem revealed by in silico modeling of metallo-β-lactamase active sites.
    Chakraborty S; Asgeirsson B; Minda R; Salaye L; Frère JM; Rao BJ
    FEBS Lett; 2012 Oct; 586(20):3710-5. PubMed ID: 22982109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase.
    Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O
    Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multitarget selection of catalytic antibodies with β-lactamase activity using phage display.
    Shahsavarian MA; Chaaya N; Costa N; Boquet D; Atkinson A; Offmann B; Kaveri SV; Lacroix-Desmazes S; Friboulet A; Avalle B; Padiolleau-Lefèvre S
    FEBS J; 2017 Feb; 284(4):634-653. PubMed ID: 28075071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and mechanistic insights into NDM-1 catalyzed hydrolysis of cephalosporins.
    Feng H; Ding J; Zhu D; Liu X; Xu X; Zhang Y; Zang S; Wang DC; Liu W
    J Am Chem Soc; 2014 Oct; 136(42):14694-7. PubMed ID: 25268575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mimicking natural evolution in metallo-beta-lactamases through second-shell ligand mutations.
    Tomatis PE; Rasia RM; Segovia L; Vila AJ
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13761-6. PubMed ID: 16172409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily.
    Bebrone C
    Biochem Pharmacol; 2007 Dec; 74(12):1686-701. PubMed ID: 17597585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.