BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28992705)

  • 21. Role of Non-Active-Site Residue Trp-93 in the Function and Stability of New Delhi Metallo-β-Lactamase 1.
    Khan AU; Rehman MT
    Antimicrob Agents Chemother; 2016 Jan; 60(1):356-60. PubMed ID: 26525789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovery of a novel covalent non-β-lactam inhibitor of the metallo-β-lactamase NDM-1.
    Christopeit T; Albert A; Leiros HS
    Bioorg Med Chem; 2016 Jul; 24(13):2947-2953. PubMed ID: 27184103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Zn2 position in metallo-beta-lactamases is critical for activity: a study on chimeric metal sites on a conserved protein scaffold.
    González JM; Medrano Martín FJ; Costello AL; Tierney DL; Vila AJ
    J Mol Biol; 2007 Nov; 373(5):1141-56. PubMed ID: 17915249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical studies of the hydrolysis of antibiotics catalyzed by a metallo-β-lactamase.
    Meliá C; Ferrer S; Moliner V; Bertran J
    Arch Biochem Biophys; 2015 Sep; 582():116-26. PubMed ID: 25622886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Why urease is a di-nickel enzyme whereas the CcrA β-lactamase is a di-zinc enzyme.
    Valdez CE; Alexandrova AN
    J Phys Chem B; 2012 Sep; 116(35):10649-56. PubMed ID: 22882185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase.
    Chantalat L; Duée E; Galleni M; Frère JM; Dideberg O
    Protein Sci; 2000 Jul; 9(7):1402-6. PubMed ID: 10933508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem.
    Garau G; Bebrone C; Anne C; Galleni M; Frère JM; Dideberg O
    J Mol Biol; 2005 Jan; 345(4):785-95. PubMed ID: 15588826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of disulfide-bond introduction on the activity and stability of the extended-spectrum class A beta-lactamase Toho-1.
    Shimizu-Ibuka A; Matsuzawa H; Sakai H
    Biochim Biophys Acta; 2006 Aug; 1764(8):1349-55. PubMed ID: 16890032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural basis for the extended substrate spectrum of AmpC BER and structure-guided discovery of the inhibition activity of citrate against the class C β-lactamases AmpC BER and CMY-10.
    Na JH; Cha SS
    Acta Crystallogr D Struct Biol; 2016 Aug; 72(Pt 8):976-85. PubMed ID: 27487828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of Conformational Dynamics in an Epistatic Evolutionary Trajectory.
    González MM; Abriata LA; Tomatis PE; Vila AJ
    Mol Biol Evol; 2016 Jul; 33(7):1768-76. PubMed ID: 26983555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Class B beta-lactamases: the importance of being metallic.
    Cricco JA; Vila AJ
    Curr Pharm Des; 1999 Nov; 5(11):915-27. PubMed ID: 10539996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elucidating the Role of Residue 67 in IMP-Type Metallo-β-Lactamase Evolution.
    LaCuran AE; Pegg KM; Liu EM; Bethel CR; Ai N; Welsh WJ; Bonomo RA; Oelschlaeger P
    Antimicrob Agents Chemother; 2015 Dec; 59(12):7299-307. PubMed ID: 26369960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structures of the class D beta-lactamase OXA-13 in the native form and in complex with meropenem.
    Pernot L; Frénois F; Rybkine T; L'Hermite G; Petrella S; Delettré J; Jarlier V; Collatz E; Sougakoff W
    J Mol Biol; 2001 Jul; 310(4):859-74. PubMed ID: 11453693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of β-lactam antibiotics to a bioinspired dizinc complex reminiscent of the active site of metallo-β-lactamases.
    Wöckel S; Galezowska J; Dechert S; Meyer F
    Inorg Chem; 2012 Feb; 51(4):2486-93. PubMed ID: 22296309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of the context dependent sequence requirements of active site residues in the metallo-beta-lactamase IMP-1.
    Materon IC; Beharry Z; Huang W; Perez C; Palzkill T
    J Mol Biol; 2004 Nov; 344(3):653-63. PubMed ID: 15533435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cooperativity and flexibility in enzyme evolution.
    Pabis A; Risso VA; Sanchez-Ruiz JM; Kamerlin SC
    Curr Opin Struct Biol; 2018 Feb; 48():83-92. PubMed ID: 29141202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Avibactam and inhibitor-resistant SHV β-lactamases.
    Winkler ML; Papp-Wallace KM; Taracila MA; Bonomo RA
    Antimicrob Agents Chemother; 2015 Jul; 59(7):3700-9. PubMed ID: 25691639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Distal Disulfide Bridge in OXA-1 β-Lactamase Stabilizes the Catalytic Center and Alters the Dynamics of the Specificity Determining Ω Loop.
    Simakov N; Leonard DA; Smith JC; Wymore T; Szarecka A
    J Phys Chem B; 2017 Apr; 121(15):3285-3296. PubMed ID: 27668669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro and cellular self-assembly of a Zn-binding protein cryptand via templated disulfide bonds.
    Medina-Morales A; Perez A; Brodin JD; Tezcan FA
    J Am Chem Soc; 2013 Aug; 135(32):12013-22. PubMed ID: 23905754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases.
    Lisa MN; Palacios AR; Aitha M; González MM; Moreno DM; Crowder MW; Bonomo RA; Spencer J; Tierney DL; Llarrull LI; Vila AJ
    Nat Commun; 2017 Sep; 8(1):538. PubMed ID: 28912448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.