These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 28992805)
1. The effects of liquid crystal-based composite substrates on cell functional responses of human umbilical cord-derived mesenchymal stem cells by mechano-regulatory process. Wu H; Shang Y; Zhang J; Cheang LH; Zeng X; Tu M J Biomater Appl; 2017 Oct; 32(4):492-503. PubMed ID: 28992805 [TBL] [Abstract][Full Text] [Related]
2. Combined Use of Recombinant Human BMP-7 and Osteogenic Media May Have No Ideal Synergistic Effect on Leporine Bone Regeneration of Human Umbilical Cord Mesenchymal Stem Cells Seeded on Nanohydroxyapatite/Collagen/Poly (l-Lactide). E LL; Cheng T; Li CJ; Zhang R; Zhang S; Liu HC; Zheng WJ Stem Cells Dev; 2020 Sep; 29(18):1215-1228. PubMed ID: 32674666 [TBL] [Abstract][Full Text] [Related]
3. Impact of Graphene-Based Surfaces on the Basic Biological Properties of Human Umbilical Cord Mesenchymal Stem Cells: Implications for Ex Vivo Cell Expansion Aimed at Tissue Repair. Jagiełło J; Sekuła-Stryjewska M; Noga S; Adamczyk E; Dźwigońska M; Kurcz M; Kurp K; Winkowska-Struzik M; Karnas E; Boruczkowski D; Madeja Z; Lipińska L; Zuba-Surma EK Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540083 [TBL] [Abstract][Full Text] [Related]
5. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro. Norouz F; Halabian R; Salimi A; Ghollasi M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109857. PubMed ID: 31349533 [TBL] [Abstract][Full Text] [Related]
6. [SOX9 enhanced chondrogenic differentiation potential of human umbilical cord mesenchymal stem cells through cellular aggregation]. Xu Y; Chen L; Shi Y; Gu Y; Zou J; Huang C; Tang TS Zhonghua Yi Xue Za Zhi; 2012 Aug; 92(29):2050-4. PubMed ID: 23253807 [TBL] [Abstract][Full Text] [Related]
7. Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique. Koroleva A; Deiwick A; Nguyen A; Schlie-Wolter S; Narayan R; Timashev P; Popov V; Bagratashvili V; Chichkov B PLoS One; 2015; 10(2):e0118164. PubMed ID: 25706270 [TBL] [Abstract][Full Text] [Related]
8. Tailored environments for directed mesenchymal stromal cell proliferation and differentiation using decellularized extracellular matrices in conjunction with substrate modulus. Yang MC; Chin IL; Fang H; Drack A; Nour S; Choi YS; O'Connor AJ; Greening DW; Kalionis B; Heath DE Acta Biomater; 2024 Oct; 187():110-122. PubMed ID: 39181177 [TBL] [Abstract][Full Text] [Related]
9. Human umbilical cord blood mesenchymal stem cells expansion via human fibroblast-derived matrix and their potentials toward regenerative application. Van SY; Noh YK; Kim SW; Oh YM; Kim IH; Park K Cell Tissue Res; 2019 May; 376(2):233-245. PubMed ID: 30610451 [TBL] [Abstract][Full Text] [Related]
10. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2]. Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997 [TBL] [Abstract][Full Text] [Related]
11. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Da L; Gong M; Chen A; Zhang Y; Huang Y; Guo Z; Li S; Li-Ling J; Zhang L; Xie H Acta Biomater; 2017 Sep; 59():45-57. PubMed ID: 28528117 [TBL] [Abstract][Full Text] [Related]
12. Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury. Shi W; Huang CJ; Xu XD; Jin GH; Huang RQ; Huang JF; Chen YN; Ju SQ; Wang Y; Shi YW; Qin JB; Zhang YQ; Liu QQ; Wang XB; Zhang XH; Chen J Acta Biomater; 2016 Nov; 45():247-261. PubMed ID: 27592818 [TBL] [Abstract][Full Text] [Related]
13. Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds. Wang L; Dormer NH; Bonewald LF; Detamore MS Tissue Eng Part A; 2010 Jun; 16(6):1937-48. PubMed ID: 20070186 [TBL] [Abstract][Full Text] [Related]
14. Superior osteogenic capacity of different mesenchymal stem cells for bone tissue engineering. Wen Y; Jiang B; Cui J; Li G; Yu M; Wang F; Zhang G; Nan X; Yue W; Xu X; Pei X Oral Surg Oral Med Oral Pathol Oral Radiol; 2013 Nov; 116(5):e324-32. PubMed ID: 22841430 [TBL] [Abstract][Full Text] [Related]
15. Calcium phosphate cement with biofunctional agents and stem cell seeding for dental and craniofacial bone repair. Thein-Han W; Liu J; Xu HH Dent Mater; 2012 Oct; 28(10):1059-70. PubMed ID: 22809583 [TBL] [Abstract][Full Text] [Related]
16. The impact and mechanism study of Sijunzi decoction and Rg1 on proliferation and differentiation of human umbilical cord mesenchymal stem cells: An experimental study. Lu Y; Ma C; Zhang Y; Zhu W; Huangfu S; Zhou Y; Zhou C; Qin F; Wang J; Li M; Jiang B Medicine (Baltimore); 2024 Aug; 103(33):e39350. PubMed ID: 39151516 [TBL] [Abstract][Full Text] [Related]
17. Metformin enhances the osteogenesis and angiogenesis of human umbilical cord mesenchymal stem cells for tissue regeneration engineering. Lei T; Deng S; Chen P; Xiao Z; Cai S; Hang Z; Yang Y; Zhang X; Li Q; Du H Int J Biochem Cell Biol; 2021 Dec; 141():106086. PubMed ID: 34551339 [TBL] [Abstract][Full Text] [Related]
18. Matrix stiffness regulates myocardial differentiation of human umbilical cord mesenchymal stem cells. Sun Y; Liu J; Xu Z; Lin X; Zhang X; Li L; Li Y Aging (Albany NY); 2020 Dec; 13(2):2231-2250. PubMed ID: 33318310 [TBL] [Abstract][Full Text] [Related]
19. Effect of matrix stiffness on the proliferation and differentiation of umbilical cord mesenchymal stem cells. Xu J; Sun M; Tan Y; Wang H; Wang H; Li P; Xu Z; Xia Y; Li L; Li Y Differentiation; 2017; 96():30-39. PubMed ID: 28753444 [TBL] [Abstract][Full Text] [Related]
20. Osteogenic differentiation of equine cord blood multipotent mesenchymal stromal cells within coralline hydroxyapatite scaffolds in vitro. Figueroa RJ; Koch TG; Betts DH Vet Comp Orthop Traumatol; 2011; 24(5):354-62. PubMed ID: 21792475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]