These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 28993133)
1. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy. Shaterabadi Z; Nabiyouni G; Soleymani M Prog Biophys Mol Biol; 2018 Mar; 133():9-19. PubMed ID: 28993133 [TBL] [Abstract][Full Text] [Related]
2. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
3. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines. Demirci Dönmez ÇE; Manna PK; Nickel R; Aktürk S; van Lierop J ACS Appl Mater Interfaces; 2019 Feb; 11(7):6858-6866. PubMed ID: 30676734 [TBL] [Abstract][Full Text] [Related]
4. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Andreu I; Natividad E Int J Hyperthermia; 2013 Dec; 29(8):739-51. PubMed ID: 24001056 [TBL] [Abstract][Full Text] [Related]
5. Precise determination of the heat delivery during in vivo magnetic nanoparticle hyperthermia with infrared thermography. Rodrigues HF; Capistrano G; Mello FM; Zufelato N; Silveira-Lacerda E; Bakuzis AF Phys Med Biol; 2017 May; 62(10):4062-4082. PubMed ID: 28306552 [TBL] [Abstract][Full Text] [Related]
6. Physics of heat generation using magnetic nanoparticles for hyperthermia. Dennis CL; Ivkov R Int J Hyperthermia; 2013 Dec; 29(8):715-29. PubMed ID: 24131317 [TBL] [Abstract][Full Text] [Related]
8. Recent advances in functionalized ferrite nanoparticles: From fundamentals to magnetic hyperthermia cancer therapy. Zhang L; Li Q; Liu J; Deng Z; Zhang X; Alifu N; Zhang X; Yu Z; Liu Y; Lan Z; Wen T; Sun K Colloids Surf B Biointerfaces; 2024 Feb; 234():113754. PubMed ID: 38241891 [TBL] [Abstract][Full Text] [Related]
9. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. Suriyanto ; Ng EY; Kumar SD Biomed Eng Online; 2017 Mar; 16(1):36. PubMed ID: 28335790 [TBL] [Abstract][Full Text] [Related]
10. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy. Caizer C Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292 [TBL] [Abstract][Full Text] [Related]
11. Effect of heat dissipation of superparamagnetic nanoparticles in alternating magnetic field on three human cancer cell lines in magnetic fluid hyperthermia. Attar MM; Haghpanahi M Electromagn Biol Med; 2016; 35(4):305-20. PubMed ID: 27015154 [TBL] [Abstract][Full Text] [Related]
12. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Di Corato R; Espinosa A; Lartigue L; Tharaud M; Chat S; Pellegrino T; Ménager C; Gazeau F; Wilhelm C Biomaterials; 2014 Aug; 35(24):6400-11. PubMed ID: 24816363 [TBL] [Abstract][Full Text] [Related]
13. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Gavilán H; Avugadda SK; Fernández-Cabada T; Soni N; Cassani M; Mai BT; Chantrell R; Pellegrino T Chem Soc Rev; 2021 Oct; 50(20):11614-11667. PubMed ID: 34661212 [TBL] [Abstract][Full Text] [Related]
14. Modified MgFe2O4 Ferrimagnetic Nanoparticles to Improve Magnetic and AC Magnetically-Induced Heating Characteristics for Hyperthermia. Lee S; Jeun M J Nanosci Nanotechnol; 2015 Dec; 15(12):9597-602. PubMed ID: 26682384 [TBL] [Abstract][Full Text] [Related]
15. Cancer hyperthermia using magnetic nanoparticles. Kobayashi T Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094 [TBL] [Abstract][Full Text] [Related]
16. A Heat Dissipation Study of Iron Oxide Nanoparticles Embedded an Agar Phantom for the Purpose of Magnetic Fluid Hyperthermia. Yamamoto Y; Itoh T; Irieda T J Nanosci Nanotechnol; 2019 Sep; 19(9):5469-5475. PubMed ID: 30961698 [TBL] [Abstract][Full Text] [Related]
17. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia. Makridis A; Chatzitheodorou I; Topouridou K; Yavropoulou MP; Angelakeris M; Dendrinou-Samara C Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():663-70. PubMed ID: 27040263 [TBL] [Abstract][Full Text] [Related]
18. In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia. Vicentini M; Vassallo M; Ferrero R; Androulakis I; Manzin A Comput Methods Programs Biomed; 2022 Aug; 223():106975. PubMed ID: 35792363 [TBL] [Abstract][Full Text] [Related]
19. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. Espinosa A; Di Corato R; Kolosnjaj-Tabi J; Flaud P; Pellegrino T; Wilhelm C ACS Nano; 2016 Feb; 10(2):2436-46. PubMed ID: 26766814 [TBL] [Abstract][Full Text] [Related]
20. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]