BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28993194)

  • 1. Identification of a selective inhibitor of human monocarboxylate transporter 4.
    Futagi Y; Kobayashi M; Narumi K; Furugen A; Iseki K
    Biochem Biophys Res Commun; 2018 Jan; 495(1):427-432. PubMed ID: 28993194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The flexible cytoplasmic loop 3 contributes to the substrate affinity of human monocarboxylate transporters.
    Futagi Y; Sasaki S; Kobayashi M; Narumi K; Furugen A; Iseki K
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1790-1795. PubMed ID: 28559188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homology modeling and site-directed mutagenesis identify amino acid residues underlying the substrate selection mechanism of human monocarboxylate transporters 1 (hMCT1) and 4 (hMCT4).
    Futagi Y; Kobayashi M; Narumi K; Furugen A; Iseki K
    Cell Mol Life Sci; 2019 Dec; 76(24):4905-4921. PubMed ID: 31101938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crucial residue involved in L-lactate recognition by human monocarboxylate transporter 4 (hMCT4).
    Sasaki S; Kobayashi M; Futagi Y; Ogura J; Yamaguchi H; Takahashi N; Iseki K
    PLoS One; 2013; 8(7):e67690. PubMed ID: 23935841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atorvastatin Exerts More Selective Inhibitory Effects on hMCT2 than on hMCT1 and hMCT4.
    Yamaguchi A; Mukai Y; Sakuma T; Furugen A; Narumi K; Kobayashi M
    Anticancer Res; 2023 Jul; 43(7):3015-3022. PubMed ID: 37351987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the essential extracellular aspartic acids conserved in human monocarboxylate transporters 1, 2, and 4.
    Yamaguchi A; Narumi K; Furugen A; Iseki K; Kobayashi M
    Biochem Biophys Res Commun; 2020 Sep; 529(4):1061-1065. PubMed ID: 32819565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Holistic Evolutionary and 3D Pharmacophore Modelling Study Provides Insights into the Metabolism, Function, and Substrate Selectivity of the Human Monocarboxylate Transporter 4 (hMCT4).
    Papakonstantinou E; Vlachakis D; Thireou T; Vlachoyiannopoulos PG; Eliopoulos E
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33805725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport function, regulation, and biology of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4).
    Kobayashi M; Narumi K; Furugen A; Iseki K
    Pharmacol Ther; 2021 Oct; 226():107862. PubMed ID: 33894276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory effects of statins on human monocarboxylate transporter 4.
    Kobayashi M; Otsuka Y; Itagaki S; Hirano T; Iseki K
    Int J Pharm; 2006 Jul; 317(1):19-25. PubMed ID: 16621368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of diclofenac on SLC16A3/MCT4 by the Caco-2 cell line.
    Sasaki S; Futagi Y; Ideno M; Kobayashi M; Narumi K; Furugen A; Iseki K
    Drug Metab Pharmacokinet; 2016 Jun; 31(3):218-23. PubMed ID: 27236641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of monocarboxylate transporter by N-cyanosulphonamide S0859.
    Heidtmann H; Ruminot I; Becker HM; Deitmer JW
    Eur J Pharmacol; 2015 Sep; 762():344-9. PubMed ID: 26027796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological Inhibition of MCT4 Reduces 4-Hydroxytamoxifen Sensitivity by Increasing HIF-1α Protein Expression in ER-Positive MCF-7 Breast Cancer Cells.
    Nadai T; Narumi K; Furugen A; Saito Y; Iseki K; Kobayashi M
    Biol Pharm Bull; 2021; 44(9):1247-1253. PubMed ID: 34471053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular lysine 38 plays a crucial role in pH-dependent transport via human monocarboxylate transporter 1.
    Yamaguchi A; Futagi Y; Kobayashi M; Narumi K; Furugen A; Iseki K
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183068. PubMed ID: 31593685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters.
    Nancolas B; Guo L; Zhou R; Nath K; Nelson DS; Leeper DB; Blair IA; Glickson JD; Halestrap AP
    Biochem J; 2016 Apr; 473(7):929-36. PubMed ID: 26831515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of a 'proton antenna' facilitates transport activity of the monocarboxylate transporter MCT4.
    Noor SI; Pouyssegur J; Deitmer JW; Becker HM
    FEBS J; 2017 Jan; 284(1):149-162. PubMed ID: 27860283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous lactate transport in Xenopus laevis oocyte: dependence on cytoskeleton and regulation by protein kinases.
    Tosco M; Faelli A; Gastaldi G; Paulmichl M; Orsenigo MN
    J Comp Physiol B; 2008 May; 178(4):457-63. PubMed ID: 18180930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH.
    Bröer S; Schneider HP; Bröer A; Rahman B; Hamprecht B; Deitmer JW
    Biochem J; 1998 Jul; 333 ( Pt 1)(Pt 1):167-74. PubMed ID: 9639576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of monocarboxylate transporter 2 and 4 in the transport of gamma-hydroxybutyric acid in mammalian cells.
    Wang Q; Morris ME
    Drug Metab Dispos; 2007 Aug; 35(8):1393-9. PubMed ID: 17502341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of monocarboxylate uptake and immunohistochemical demonstration of monocarboxylate transporters in cultured rabbit corneal epithelial cells.
    Kawazu K; Fujii S; Yamada K; Shinomiya K; Katsuta O; Horibe Y
    J Pharm Pharmacol; 2013 Mar; 65(3):328-36. PubMed ID: 23356841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of Histidine Residue His382 in pH Regulation of MCT4 Activity.
    Sasaki S; Kobayashi M; Futagi Y; Ogura J; Yamaguchi H; Iseki K
    PLoS One; 2014; 10(4):e0122738. PubMed ID: 25919709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.