BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

565 related articles for article (PubMed ID: 28993289)

  • 1. Sirt1 and Parp1 as epigenome safeguards and microRNAs as SASP-associated signals, in cellular senescence and aging.
    Hekmatimoghaddam S; Dehghani Firoozabadi A; Zare-Khormizi MR; Pourrajab F
    Ageing Res Rev; 2017 Nov; 40():120-141. PubMed ID: 28993289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rejuvenation of senescent cells-the road to postponing human aging and age-related disease?
    Sikora E
    Exp Gerontol; 2013 Jul; 48(7):661-6. PubMed ID: 23064316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anemonin ameliorates human diploid fibroblasts 2BS and IMR90 cell senescence by PARP1-NAD
    Zhao L; Hu K; Liu W; Qi H; Li G; Chen J; Han L
    Arch Gerontol Geriatr; 2024 Feb; 117():105255. PubMed ID: 37952424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PARP1 inhibitor (PJ34) improves the function of aging-induced endothelial progenitor cells by preserving intracellular NAD
    Zha S; Li Z; Cao Q; Wang F; Liu F
    Stem Cell Res Ther; 2018 Aug; 9(1):224. PubMed ID: 30139380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming.
    Ong ALC; Ramasamy TS
    Ageing Res Rev; 2018 May; 43():64-80. PubMed ID: 29476819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin regulates PARP1 to control the senescence-associated secretory phenotype (SASP) in human fetal lung fibroblast cells.
    Yu S; Wang X; Geng P; Tang X; Xiang L; Lu X; Li J; Ruan Z; Chen J; Xie G; Wang Z; Ou J; Peng Y; Luo X; Zhang X; Dong Y; Pang X; Miao H; Chen H; Liang H
    J Pineal Res; 2017 Aug; 63(1):. PubMed ID: 28247536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miRNAs in stem cell aging and age-related disease.
    Choi SW; Lee JY; Kang KS
    Mech Ageing Dev; 2017 Dec; 168():20-29. PubMed ID: 28847486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resveratrol reduces senescence-associated secretory phenotype by SIRT1/NF-κB pathway in gut of the annual fish Nothobranchius guentheri.
    Liu S; Zheng Z; Ji S; Liu T; Hou Y; Li S; Li G
    Fish Shellfish Immunol; 2018 Sep; 80():473-479. PubMed ID: 29908321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hallmarks of aging.
    López-Otín C; Blasco MA; Partridge L; Serrano M; Kroemer G
    Cell; 2013 Jun; 153(6):1194-217. PubMed ID: 23746838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation.
    Hayakawa T; Iwai M; Aoki S; Takimoto K; Maruyama M; Maruyama W; Motoyama N
    PLoS One; 2015; 10(1):e0116480. PubMed ID: 25635860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial progenitor cells from aged subjects display decreased expression of sirtuin 1, angiogenic functions, and increased senescence.
    Kaur I; Rawal P; Rohilla S; Bhat MH; Sharma P; Siddiqui H; Kaur S
    Cell Biol Int; 2018 Sep; 42(9):1212-1220. PubMed ID: 29851177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging.
    Olivieri F; Albertini MC; Orciani M; Ceka A; Cricca M; Procopio AD; Bonafè M
    Oncotarget; 2015 Nov; 6(34):35509-21. PubMed ID: 26431329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of stem cell aging by SIRT1 - Linking metabolic signaling to epigenetic modifications.
    Yu A; Dang W
    Mol Cell Endocrinol; 2017 Nov; 455():75-82. PubMed ID: 28392411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype.
    Malaquin N; Martinez A; Rodier F
    Exp Gerontol; 2016 Sep; 82():39-49. PubMed ID: 27235851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The master switchers in the aging of cardiovascular system, reverse senescence by microRNA signatures; as highly conserved molecules.
    Pourrajab F; Vakili Zarch A; Hekmatimoghaddam S; Zare-Khormizi MR
    Prog Biophys Mol Biol; 2015 Nov; 119(2):111-28. PubMed ID: 26033200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PARP1 at the crossroad of cellular senescence and nucleolar processes.
    Kołacz K; Robaszkiewicz A
    Ageing Res Rev; 2024 Feb; 94():102206. PubMed ID: 38278370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNAs linking inflamm-aging, cellular senescence and cancer.
    Olivieri F; Rippo MR; Monsurrò V; Salvioli S; Capri M; Procopio AD; Franceschi C
    Ageing Res Rev; 2013 Sep; 12(4):1056-68. PubMed ID: 23688930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Histone Code of Senescence.
    Paluvai H; Di Giorgio E; Brancolini C
    Cells; 2020 Feb; 9(2):. PubMed ID: 32085582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sirtuins, epigenetics and longevity.
    Wątroba M; Dudek I; Skoda M; Stangret A; Rzodkiewicz P; Szukiewicz D
    Ageing Res Rev; 2017 Nov; 40():11-19. PubMed ID: 28789901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogenesis of Pro-senescent Microparticles by Endothelial Colony Forming Cells from Premature Neonates is driven by SIRT1-Dependent Epigenetic Regulation of MKK6.
    Simoncini S; Chateau AL; Robert S; Todorova D; Yzydorzick C; Lacroix R; Ligi I; Louis L; Bachelier R; Simeoni U; Magdinier F; Dignat-George F; Sabatier F
    Sci Rep; 2017 Aug; 7(1):8277. PubMed ID: 28811647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.