These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28993414)

  • 1. A Collaborative Model for Accelerating the Discovery and Translation of Cancer Therapies.
    Maertens O; McCurrach ME; Braun BS; De Raedt T; Epstein I; Huang TQ; Lauchle JO; Lee H; Wu J; Cripe TP; Clapp DW; Ratner N; Shannon K; Cichowski K
    Cancer Res; 2017 Nov; 77(21):5706-5711. PubMed ID: 28993414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous and Engineered Large Animal Models of Neurofibromatosis Type 1.
    Osum SH; Watson AL; Largaespada DA
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33669386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive in vivo animal models and translation to clinical trials.
    Cook N; Jodrell DI; Tuveson DA
    Drug Discov Today; 2012 Mar; 17(5-6):253-60. PubMed ID: 22493784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GEMMs as preclinical models for testing pancreatic cancer therapies.
    Gopinathan A; Morton JP; Jodrell DI; Sansom OJ
    Dis Model Mech; 2015 Oct; 8(10):1185-200. PubMed ID: 26438692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Priceless GEMMs: genetically engineered mouse models for colorectal cancer drug development.
    Roper J; Hung KE
    Trends Pharmacol Sci; 2012 Aug; 33(8):449-55. PubMed ID: 22739258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical, Pathological, and Ethical Considerations for the Conduct of Clinical Trials in Dogs with Naturally Occurring Cancer: A Comparative Approach to Accelerate Translational Drug Development.
    Regan D; Garcia K; Thamm D
    ILAR J; 2018 Dec; 59(1):99-110. PubMed ID: 30668709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimising translational oncology in clinical practice: strategies to accelerate progress in drug development.
    Stahel R; Bogaerts J; Ciardiello F; de Ruysscher D; Dubsky P; Ducreux M; Finn S; Laurent-Puig P; Peters S; Piccart M; Smit E; Sotiriou C; Tejpar S; Van Cutsem E; Tabernero J
    Cancer Treat Rev; 2015 Feb; 41(2):129-35. PubMed ID: 25533737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rethinking 'academic' drug discovery: the Manchester Institute perspective.
    Jordan AM; Waddell ID; Ogilvie DJ
    Drug Discov Today; 2015 May; 20(5):525-35. PubMed ID: 25542353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Animal models for modeling pancreatic cancer and novel drug discovery.
    Bisht S; Feldmann G
    Expert Opin Drug Discov; 2019 Feb; 14(2):127-142. PubMed ID: 30657339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Pharmacology Models for Cancer Target Research.
    Chen D; An X; Ouyang X; Cai J; Zhou D; Li QX
    Methods Mol Biol; 2019; 1953():183-211. PubMed ID: 30912023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of mechanism of action biology-driven early drug development for children with cancer.
    Pearson AD; Herold R; Rousseau R; Copland C; Bradley-Garelik B; Binner D; Capdeville R; Caron H; Carleer J; Chesler L; Geoerger B; Kearns P; Marshall LV; Pfister SM; Schleiermacher G; Skolnik J; Spadoni C; Sterba J; van den Berg H; Uttenreuther-Fischer M; Witt O; Norga K; Vassal G;
    Eur J Cancer; 2016 Jul; 62():124-31. PubMed ID: 27258969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug discovery in prostate cancer mouse models.
    Valkenburg KC; Pienta KJ
    Expert Opin Drug Discov; 2015; 10(9):1011-24. PubMed ID: 26027638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Addressing the right targets in oncology: challenges and alternative approaches.
    Stock JK; Jones NP; Hammonds T; Roffey J; Dillon C
    J Biomol Screen; 2015 Mar; 20(3):305-17. PubMed ID: 25614505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges and opportunities for drug discovery in psychiatric disorders: the drug hunters' perspective.
    Wong EH; Yocca F; Smith MA; Lee CM
    Int J Neuropsychopharmacol; 2010 Oct; 13(9):1269-84. PubMed ID: 20716397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. True alignment of preclinical and clinical research to enhance success in CNS drug development: a review of the current evidence.
    Goetghebeur PJ; Swartz JE
    J Psychopharmacol; 2016 Jul; 30(7):586-94. PubMed ID: 27147593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collaborative approaches to anticancer drug discovery and development: a Cancer Research UK perspective.
    Williams RJ; Walker I; Takle AK
    Drug Discov Today; 2012 Mar; 17(5-6):185-7. PubMed ID: 22314099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery.
    Ruggeri BA; Camp F; Miknyoczki S
    Biochem Pharmacol; 2014 Jan; 87(1):150-61. PubMed ID: 23817077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colorectal cancer models for novel drug discovery.
    Golovko D; Kedrin D; Yilmaz ÖH; Roper J
    Expert Opin Drug Discov; 2015; 10(11):1217-29. PubMed ID: 26295972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational challenges of animal models in Chagas disease drug development: a review.
    Chatelain E; Konar N
    Drug Des Devel Ther; 2015; 9():4807-23. PubMed ID: 26316715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the predictive utility of animal models of osteoarthritis.
    Malfait AM; Little CB
    Arthritis Res Ther; 2015 Sep; 17(1):225. PubMed ID: 26364707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.