BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 28994163)

  • 1. Responses of phenology and biomass production of boreal fens to climate warming under different water-table level regimes.
    Mäkiranta P; Laiho R; Mehtätalo L; Straková P; Sormunen J; Minkkinen K; Penttilä T; Fritze H; Tuittila ES
    Glob Chang Biol; 2018 Mar; 24(3):944-956. PubMed ID: 28994163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial ecology in a future climate: effects of temperature and moisture on microbial communities of two boreal fens.
    Peltoniemi K; Laiho R; Juottonen H; Kiikkilä O; Mäkiranta P; Minkkinen K; Pennanen T; Penttilä T; Sarjala T; Tuittila ES; Tuomivirta T; Fritze H
    FEMS Microbiol Ecol; 2015 Jul; 91(7):. PubMed ID: 26066028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Warming impacts on boreal fen CO
    Laine AM; Mäkiranta P; Laiho R; Mehtätalo L; Penttilä T; Korrensalo A; Minkkinen K; Fritze H; Tuittila ES
    Glob Chang Biol; 2019 Jun; 25(6):1995-2008. PubMed ID: 30854735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fine-root biomass production and its contribution to organic matter accumulation in sedge fens under changing climate.
    Bhuiyan R; Mäkiranta P; Straková P; Fritze H; Minkkinen K; Penttilä T; Rajala T; Tuittila ES; Laiho R
    Sci Total Environ; 2023 Feb; 858(Pt 2):159683. PubMed ID: 36336060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water level drawdown makes boreal peatland vegetation more responsive to weather conditions.
    Köster E; Chapman JPB; Barel JM; Korrensalo A; Laine AM; Vasander HT; Tuittila ES
    Glob Chang Biol; 2023 Oct; 29(19):5691-5705. PubMed ID: 37577794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks.
    Euskirchen ES; McGuire AD; Chapin FS; Yi S; Thompson CC
    Ecol Appl; 2009 Jun; 19(4):1022-43. PubMed ID: 19544741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spring-fen habitat islands in a warming climate: Partitioning the effects of mesoclimate air and water temperature on aquatic and terrestrial biota.
    Horsák M; Polášková V; Zhai M; Bojková J; Syrovátka V; Šorfová V; Schenková J; Polášek M; Peterka T; Hájek M
    Sci Total Environ; 2018 Sep; 634():355-365. PubMed ID: 29627559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.
    Zhang T; Guo R; Gao S; Guo J; Sun W
    PLoS One; 2015; 10(4):e0123160. PubMed ID: 25874975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shifting plant species composition in response to climate change stabilizes grassland primary production.
    Liu H; Mi Z; Lin L; Wang Y; Zhang Z; Zhang F; Wang H; Liu L; Zhu B; Cao G; Zhao X; Sanders NJ; Classen AT; Reich PB; He JS
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4051-4056. PubMed ID: 29666319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide.
    McPartland MY; Kane ES; Falkowski MJ; Kolka R; Turetsky MR; Palik B; Montgomery RA
    Glob Chang Biol; 2019 Jan; 25(1):93-107. PubMed ID: 30295397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane production and oxidation potentials along a fen-bog gradient from southern boreal to subarctic peatlands in Finland.
    Zhang H; Tuittila ES; Korrensalo A; Laine AM; Uljas S; Welti N; Kerttula J; Maljanen M; Elliott D; Vesala T; Lohila A
    Glob Chang Biol; 2021 Sep; 27(18):4449-4464. PubMed ID: 34091981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.
    Cowles JM; Wragg PD; Wright AJ; Powers JS; Tilman D
    Glob Chang Biol; 2016 Feb; 22(2):741-9. PubMed ID: 26426698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh.
    Charles H; Dukes JS
    Ecol Appl; 2009 Oct; 19(7):1758-73. PubMed ID: 19831068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal forests in the Great Xing'an Mountains, Northeast China].
    Luo X; Wang YL; Zhang JQ
    Ying Yong Sheng Tai Xue Bao; 2018 Mar; 29(3):713-724. PubMed ID: 29722211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between herbivory and warming in aboveground biomass production of arctic vegetation.
    Pedersen C; Post E
    BMC Ecol; 2008 Oct; 8():17. PubMed ID: 18945359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analyses of wetland plant biomass accumulation and litter decomposition subject to in situ warming and nitrogen addition.
    Yu X; Guo J; Lu X; Wang G; Jiang M; Zou Y
    Sci Total Environ; 2019 Nov; 691():769-778. PubMed ID: 31326800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in above- versus belowground biomass distribution in permafrost regions in response to climate warming.
    Yun H; Ciais P; Zhu Q; Chen D; Zohner CM; Tang J; Qu Y; Zhou H; Schimel J; Zhu P; Shao M; Christensen JH; Wu Q; Chen A; Elberling B
    Proc Natl Acad Sci U S A; 2024 Jun; 121(25):e2314036121. PubMed ID: 38857391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ericoid shrub encroachment shifts aboveground-belowground linkages in three peatlands across Europe and Western Siberia.
    Buttler A; Bragazza L; Laggoun-Défarge F; Gogo S; Toussaint ML; Lamentowicz M; Chojnicki BH; Słowiński M; Słowińska S; Zielińska M; Reczuga M; Barabach J; Marcisz K; Lamentowicz Ł; Harenda K; Lapshina E; Gilbert D; Schlaepfer R; Jassey VEJ
    Glob Chang Biol; 2023 Dec; 29(23):6772-6793. PubMed ID: 37578632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of root phenology in ecotypes of Eriophorum vaginatum to transplantation and warming in the Arctic.
    Ma T; Parker T; Unger S; Gewirtzman J; Fetcher N; Moody ML; Tang J
    Sci Total Environ; 2022 Jan; 805():149926. PubMed ID: 34543789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change.
    Bokhorst S; Phoenix GK; Berg MP; Callaghan TV; Kirby-Lambert C; Bjerke JW
    Glob Chang Biol; 2015 Nov; 21(11):4063-75. PubMed ID: 26111101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.