These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 28994733)

  • 1. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex.
    Jerkovic I; Koncar V; Grancaric AM
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28994733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Stretchable and Flexible Melt Spun Thermoplastic Conductive Yarns for Smart Textiles.
    Islam GMN; Collie S; Qasim M; Ali MA
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33255229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Textile-based electrochemical sensors and their applications.
    Sinha A; Dhanjai ; Stavrakis AK; Stojanović GM
    Talanta; 2022 Jul; 244():123425. PubMed ID: 35397323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Textile Strain Sensor Enhancement by Coating Metal Yarns with Carbon-Filled Silicone.
    Brendgen R; Nolden R; Simon J; Junge T; Zöll K; Schwarz-Pfeiffer A
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Flexible and Conductive Immiscible Thermoplastic/Elastomer Monofilament for Smart Textiles Applications Using 3D Printing.
    Eutionnat-Diffo PA; Cayla A; Chen Y; Guan J; Nierstrasz V; Campagne C
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33050041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensile Behavior of High-Strength, Strain-Hardening Cement-Based Composites (HS-SHCC) Reinforced with Continuous Textile Made of Ultra-High-Molecular-Weight Polyethylene.
    Gong T; Curosu I; Liebold F; Vo DMP; Zierold K; Maas HG; Cherif C; Mechtcherine V
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33321770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Piezo-Resistive Properties of Bio-Based Sensor Yarn Made with Sisal Fibre.
    Abed A; Samouh Z; Cochrane C; Boussu F; Cherkaoui O; El Moznine R; Vieillard J
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34198484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications.
    Busolo T; Szewczyk PK; Nair M; Stachewicz U; Kar-Narayan S
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16876-16886. PubMed ID: 33783199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber Optic Sensors Embedded in Textile-Reinforced Concrete for Smart Structural Health Monitoring: A Review.
    Alwis LSM; Bremer K; Roth B
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and characterisation of novel phosphate glass fibre yarns, textiles, and textile composites for biomedical applications.
    Wang Y; Liu X; Zhu C; Parsons A; Liu J; Huang S; Ahmed I; Rudd C; Sharmin N
    J Mech Behav Biomed Mater; 2019 Nov; 99():47-55. PubMed ID: 31344522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers.
    Seyedin S; Razal JM; Innis PC; Jeiranikhameneh A; Beirne S; Wallace GG
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21150-8. PubMed ID: 26334190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Powered and Self-Sensing Energy Textile System for Flexible Wearable Applications.
    Du X; Tian M; Sun G; Li Z; Qi X; Zhao H; Zhu S; Qu L
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55876-55883. PubMed ID: 33269916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melt Spinning of Highly Stretchable, Electrically Conductive Filament Yarns.
    Probst H; Katzer K; Nocke A; Hickmann R; Zimmermann M; Cherif C
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33669330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognizant Fiber-Reinforced Polymer Composites Incorporating Seamlessly Integrated Sensing and Computing Circuitry.
    Jaradat M; Duran JL; Murcia DH; Buechley L; Shen YL; Christodoulou C; Taha MR
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-Washable Conductive Silk Yarns with a Composite Coating of Ag Nanowires and PEDOT:PSS.
    Hwang B; Lund A; Tian Y; Darabi S; Müller C
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27537-27544. PubMed ID: 32441502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEDOT:PSS-based piezo-resistive sensors applied to reinforcement glass fibres for in situ measurement during the composite material weaving process.
    Trifigny N; Kelly FM; Cochrane C; Boussu F; Koncar V; Soulat D
    Sensors (Basel); 2013 Aug; 13(8):10749-64. PubMed ID: 23959238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of Textile Polymer Composites: Recent Trends and Challenges.
    Amor N; Noman MT; Petru M
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic Self-Assembly of Composite Nanofiber Yarn.
    Wang WC; Cheng YT; Estroff B
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33375138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tensile Experiments and Numerical Analysis of Textile-Reinforced Lightweight Engineered Cementitious Composites.
    Chen M; Deng X; Guo R; Fu C; Zhang J
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Graphene Flakes for Wearable Textile Sensors via Highly Scalable and Ultrafast Yarn Dyeing Technique.
    Afroj S; Karim N; Wang Z; Tan S; He P; Holwill M; Ghazaryan D; Fernando A; Novoselov KS
    ACS Nano; 2019 Apr; 13(4):3847-3857. PubMed ID: 30816692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.