These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28994834)

  • 1. Insights into the mechanism of ethanol synthesis and ethyl acetate inhibition from acetic acid hydrogenation over Cu
    Liu J; Lyu H; Chen Y; Li G; Jiang H; Zhang M
    Phys Chem Chem Phys; 2017 Oct; 19(41):28083-28097. PubMed ID: 28994834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the reaction mechanism of ethanol synthesis from acetic acid over a Ni
    Chen Y; Zhai Z; Liu J; Zhang J; Geng Z; Lyu H
    Phys Chem Chem Phys; 2020 Apr; 22(14):7564-7576. PubMed ID: 32222750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The synergistic effects of Cu clusters and In
    Chen Y; Zhai Z; Liu J; Zhang J; Geng Z; Lyu H
    Phys Chem Chem Phys; 2019 Nov; 21(43):23906-23915. PubMed ID: 31657393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of surface oxygen vacancy sites on ethanol synthesis from acetic acid hydrogenation on a defective In
    Lyu H; Liu J; Chen Y; Li G; Jiang H; Zhang M
    Phys Chem Chem Phys; 2018 Mar; 20(10):7156-7166. PubMed ID: 29479593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of C
    Ling L; Wang Q; Zhang R; Li D; Wang B
    Phys Chem Chem Phys; 2017 Nov; 19(45):30883-30894. PubMed ID: 29134992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts.
    Alcala R; Shabaker JW; Huber GW; Sanchez-Castillo MA; Dumesic JA
    J Phys Chem B; 2005 Feb; 109(6):2074-85. PubMed ID: 16851198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monodisperse ordered indium-palladium nanoparticles: synthesis and role of indium for boosting superior electrocatalytic activity for ethanol oxidation reaction.
    Chen YJ; Chen YR; Chiang CH; Tung KL; Yeh TK; Tuan HY
    Nanoscale; 2019 Feb; 11(7):3336-3343. PubMed ID: 30724949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into the mechanism of methanol assistance with syngas conversion over partially hydroxylated γ-Al
    Bai B; Bai H; Cao HJ; Gao ZH; Zuo ZJ; Huang W
    Phys Chem Chem Phys; 2018 May; 20(18):12845-12857. PubMed ID: 29700517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.
    Wang HF; Liu ZP
    J Am Chem Soc; 2008 Aug; 130(33):10996-1004. PubMed ID: 18642913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insights into the iridium catalysed hydrogenation of ethyl acetate to ethanol: a DFT study.
    Yan X; Yang X
    Dalton Trans; 2018 Jul; 47(30):10172-10178. PubMed ID: 30010677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of ethanol synthesis from syngas on Rh(111).
    Choi Y; Liu P
    J Am Chem Soc; 2009 Sep; 131(36):13054-61. PubMed ID: 19702298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined Spectroscopic and Computational Study of Nitrobenzene Activation on Non-Noble Metals-Based Mono- and Bimetallic Catalysts.
    Millán R; Soriano MD; Cerdá Moreno C; Boronat M; Concepción P
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamental studies of methanol synthesis from CO(2) hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001).
    Yang Y; Evans J; Rodriguez JA; White MG; Liu P
    Phys Chem Chem Phys; 2010 Sep; 12(33):9909-17. PubMed ID: 20567756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The formation mechanism of the initial C-C chain in ethanol synthesis on γ-AlOOH(100).
    Zhang L; Bai B; Bai H; Huang W; Gao ZH; Zuo ZJ; Lv YK
    Phys Chem Chem Phys; 2017 Jul; 19(29):19300-19307. PubMed ID: 28702626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol synthesis from syngas over Cu(Pd)-doped Fe(100): a systematic theoretical investigation.
    Wang W; Wang Y; Wang GC
    Phys Chem Chem Phys; 2018 Jan; 20(4):2492-2507. PubMed ID: 29313538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon chain growth by formyl coupling over the Cu/γ-AlOOH(001) surface in syngas conversion.
    Bai H; Ma M; Bai B; Cao H; Zhang L; Gao Z; Vinokurov VA; Huang W
    Phys Chem Chem Phys; 2018 Dec; 21(1):148-159. PubMed ID: 30515495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic Effect of a Boron-Doped Carbon-Nanotube-Supported Cu Catalyst for Selective Hydrogenation of Dimethyl Oxalate to Ethanol.
    Ai P; Tan M; Yamane N; Liu G; Fan R; Yang G; Yoneyama Y; Yang R; Tsubaki N
    Chemistry; 2017 Jun; 23(34):8252-8261. PubMed ID: 28421629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new and different insight into the promotion mechanisms of Ga for the hydrogenation of carbon dioxide to methanol over a Ga-doped Ni(211) bimetallic catalyst.
    Tang Q; Ji W; Russell CK; Zhang Y; Fan M; Shen Z
    Nanoscale; 2019 May; 11(20):9969-9979. PubMed ID: 31070648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogenation of substituted nitroaromatics on non-noble metal catalysts: mechanistic insights to improve selectivity.
    Millán R; Boronat M
    Faraday Discuss; 2021 May; 229():297-317. PubMed ID: 33650590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct and remarkably efficient conversion of methane into acetic acid catalyzed by amavadine and related vanadium complexes. A synthetic and a theoretical DFT mechanistic study.
    Kirillova MV; Kuznetsov ML; Reis PM; da Silva JA; da Silva JJ; Pombeiro AJ
    J Am Chem Soc; 2007 Aug; 129(34):10531-45. PubMed ID: 17676842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.