These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2900007)

  • 1. Palmitoyl carnitine: an endogenous promotor of calcium efflux from rat heart mitochondria.
    Baydoun AR; Markham A; Morgan RM; Sweetman AJ
    Biochem Pharmacol; 1988 Aug; 37(16):3103-7. PubMed ID: 2900007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiration-dependent calcium ion uptake by two preparations of cardiac mitochondria. Effects of palmitoyl-coenzyme A and palmitoylcarnitine on calcium ion cycling and nicotinamide nucleotide reduction state.
    Wolkowicz PE; McMillin-Wood J
    Biochem J; 1980 Jan; 186(1):257-66. PubMed ID: 6154457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of fatty acids and ketones on the activity of pyruvate dehydrogenase in skeletal-muscle mitochondria.
    Ashour B; Hansford RG
    Biochem J; 1983 Sep; 214(3):725-36. PubMed ID: 6138029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of palmityl coenzyme A and palmitylcarnitine on phosphorylating respiration in heart mitochondria.
    Wood JM
    Arch Biochem Biophys; 1978 Jan; 185(2):352-61. PubMed ID: 626500
    [No Abstract]   [Full Text] [Related]  

  • 5. Influence of propolis water solution on heart mitochondrial function.
    Majiene D; Trumbeckaite S; Savickas A; Toleikis A
    J Pharm Pharmacol; 2006 May; 58(5):709-13. PubMed ID: 16640841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bay K 8644, modifier of calcium transport and energy metabolism in rat heart mitochondria: a new intracellular site of action.
    Baydoun AR; Markham A; Morgan RM; Sweetman AJ
    Br J Pharmacol; 1990 Sep; 101(1):15-20. PubMed ID: 1704271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Palmitoyl-carnitine increases RyR2 oxidation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes: Role of adenine nucleotide translocase.
    Roussel J; Thireau J; Brenner C; Saint N; Scheuermann V; Lacampagne A; Le Guennec JY; Fauconnier J
    Biochim Biophys Acta; 2015 May; 1852(5):749-58. PubMed ID: 25619687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial Ca2+ fluxes: role of free fatty acids, acyl-CoA and acylcarnitine.
    De Villiers M; Lochner A
    Biochim Biophys Acta; 1986 Apr; 876(2):309-17. PubMed ID: 3955069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake of the neurotoxin 1-methyl-4-phenylpyridine (MPP+) by mitochondria and its relation to the inhibition of the mitochondrial oxidation of NAD+-linked substrates by MPP+.
    Ramsay RR; Salach JI; Singer TP
    Biochem Biophys Res Commun; 1986 Jan; 134(2):743-8. PubMed ID: 2868716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of lead-induced mitochondrial Ca2+ efflux.
    Chávez E; Jay D; Bravo C
    J Bioenerg Biomembr; 1987 Jun; 19(3):285-95. PubMed ID: 2887557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria from the hepatopancreas of the marine clam Mercenaria mercenaria: substrate preferences and salt and pH effects on the oxidation of palmitoyl-L-carnitine and succinate.
    Ballantyne JS; Storey KB
    J Exp Zool; 1984 May; 230(2):165-74. PubMed ID: 6736891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of palmitoyl CoA and palmitoyl carnitine on the membrane potential and Mg2+ content of rat heart mitochondria.
    Siliprandi D; Biban C; Testa S; Toninello A; Siliprandi N
    Mol Cell Biochem; 1992 Oct; 116(1-2):117-23. PubMed ID: 1282667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of NAD-linked dehydrogenase activity on flux through oxidative phosphorylation.
    Moreno-Sánchez R; Hogue BA; Hansford RG
    Biochem J; 1990 Jun; 268(2):421-8. PubMed ID: 2363681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous palmitoyl carnitine and membrane damage in rat hearts.
    Busselen P; Sercu D; Verdonck F
    J Mol Cell Cardiol; 1988 Oct; 20(10):905-16. PubMed ID: 3216401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thyroxine-induced changes in rat liver mitochondrial ubiquinone.
    Horrum MA; Tobin RB; Ecklund RE
    Biochem Biophys Res Commun; 1986 Jul; 138(1):381-6. PubMed ID: 2874802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct activation of Ca2+ channels by palmitoyl carnitine, a putative endogenous ligand.
    Spedding M; Mir AK
    Br J Pharmacol; 1987 Oct; 92(2):457-68. PubMed ID: 2445406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of acetoacetate and palmitylcarnitine by brain and liver mitochondria from suckling and adult rats.
    Krasinskaya IP; Mourek J; Drahota Z; Dobesová Z; Rauchová H
    Physiol Bohemoslov; 1985; 34(2):121-5. PubMed ID: 3161101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of palmitoyl carnitine with calcium antagonists in myocytes.
    Patmore L; Duncan GP; Spedding M
    Br J Pharmacol; 1989 Jun; 97(2):443-50. PubMed ID: 2474346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise training decreases rat heart mitochondria free radical generation but does not prevent Ca2+-induced dysfunction.
    Starnes JW; Barnes BD; Olsen ME
    J Appl Physiol (1985); 2007 May; 102(5):1793-8. PubMed ID: 17303708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.