These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 2900467)
1. Precipitation of spinally mediated withdrawal signs by intrathecal administration of naloxone and the mu-receptor antagonist CTP in morphine-dependent mice. Shook J; Kazmierski W; Hruby V; Burks T NIDA Res Monogr; 1988; 81():143-8. PubMed ID: 2900467 [TBL] [Abstract][Full Text] [Related]
2. A cyclic somatostatin analog that precipitates withdrawal in morphine-dependent mice. Shook JE; Pelton JT; Kazmierski W; Lemcke PK; Villar RG; Hruby VJ; Burks TF NIDA Res Monogr; 1987; 76():295-301. PubMed ID: 2893981 [TBL] [Abstract][Full Text] [Related]
3. Effects of naloxone and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 and the protein kinase inhibitors H7 and H8 on acute morphine dependence and antinociceptive tolerance in mice. Bilsky EJ; Bernstein RN; Wang Z; Sadée W; Porreca F J Pharmacol Exp Ther; 1996 Apr; 277(1):484-90. PubMed ID: 8613958 [TBL] [Abstract][Full Text] [Related]
4. Mu opioid antagonist properties of a cyclic somatostatin octapeptide in vivo: identification of mu receptor-related functions. Shook JE; Pelton JT; Lemcke PK; Porreca F; Hruby VJ; Burks TF J Pharmacol Exp Ther; 1987 Jul; 242(1):1-7. PubMed ID: 2886635 [TBL] [Abstract][Full Text] [Related]
5. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid mu-agonist/delta-antagonist that produces limited antinociceptive tolerance and attenuates morphine physical dependence. Wells JL; Bartlett JL; Ananthan S; Bilsky EJ J Pharmacol Exp Ther; 2001 May; 297(2):597-605. PubMed ID: 11303048 [TBL] [Abstract][Full Text] [Related]
7. Modification of mu-opioid agonist-induced locomotor activity and development of morphine dependence by diabetes. Kamei J; Ohsawa M; Saitoh A; Iwamoto Y; Suzuki T; Misawa M; Nagase H; Kasuya Y J Pharmacol Exp Ther; 1995 Aug; 274(2):700-6. PubMed ID: 7636731 [TBL] [Abstract][Full Text] [Related]
8. Pharmacologic evaluation of a cyclic somatostatin analog with antagonist activity at mu opioid receptors in vitro. Shook JE; Pelton JT; Wire WS; Hirning LD; Hruby VJ; Burks TF J Pharmacol Exp Ther; 1987 Mar; 240(3):772-7. PubMed ID: 2882015 [TBL] [Abstract][Full Text] [Related]
9. The heroin metabolite, 6-monoacetylmorphine, activates delta opioid receptors to produce antinociception in Swiss-Webster mice. Rady JJ; Aksu F; Fujimoto JM J Pharmacol Exp Ther; 1994 Mar; 268(3):1222-31. PubMed ID: 8138935 [TBL] [Abstract][Full Text] [Related]
10. Potency differences for D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 as an antagonist of peptide and alkaloid micro-agonists in an antinociception assay. Sterious SN; Walker EA J Pharmacol Exp Ther; 2003 Jan; 304(1):301-9. PubMed ID: 12490605 [TBL] [Abstract][Full Text] [Related]
11. The spinal cord as a site of opioid effects on gastrointestinal transit in the mouse. Porreca F; Burks TF J Pharmacol Exp Ther; 1983 Oct; 227(1):22-7. PubMed ID: 6312019 [TBL] [Abstract][Full Text] [Related]
12. Antisense oligodeoxynucleotides to opioid mu and delta receptors reduced morphine dependence in mice: role of delta-2 opioid receptors. Sánchez-Blázquez P; García-Espãna A; Garzón J J Pharmacol Exp Ther; 1997 Mar; 280(3):1423-31. PubMed ID: 9067332 [TBL] [Abstract][Full Text] [Related]
13. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens. Hirose N; Murakawa K; Takada K; Oi Y; Suzuki T; Nagase H; Cools AR; Koshikawa N Neuroscience; 2005; 135(1):213-25. PubMed ID: 16111831 [TBL] [Abstract][Full Text] [Related]
14. Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. Porreca F; Mosberg HI; Hurst R; Hruby VJ; Burks TF J Pharmacol Exp Ther; 1984 Aug; 230(2):341-8. PubMed ID: 6086883 [TBL] [Abstract][Full Text] [Related]
15. Involvement of supraspinal and peripheral naloxonazine-insensitive opioid receptor sites in the expression of μ-opioid receptor agonist-induced physical dependence. Mori T; Komiya S; Uzawa N; Inoue K; Itoh T; Aoki S; Shibasaki M; Suzuki T Eur J Pharmacol; 2013 Sep; 715(1-3):238-45. PubMed ID: 23707904 [TBL] [Abstract][Full Text] [Related]
16. Involvement of delta 2 opioid receptors in the development of morphine dependence in mice. Miyamoto Y; Portoghese PS; Takemori AE J Pharmacol Exp Ther; 1993 Mar; 264(3):1141-5. PubMed ID: 8383738 [TBL] [Abstract][Full Text] [Related]
17. Mu opiate receptor down-regulation by morphine and up-regulation by naloxone in SH-SY5Y human neuroblastoma cells. Zadina JE; Chang SL; Ge LJ; Kastin AJ J Pharmacol Exp Ther; 1993 Apr; 265(1):254-62. PubMed ID: 8097244 [TBL] [Abstract][Full Text] [Related]
18. Pretreatment with pertussis toxin differentially modulates morphine- and beta-endorphin-induced antinociception in the mouse. Tseng LF; Collins KA J Pharmacol Exp Ther; 1996 Oct; 279(1):39-46. PubMed ID: 8858973 [TBL] [Abstract][Full Text] [Related]
19. Further studies of the role of opioid receptors in the nigra in the morphine withdrawal syndrome. Baumeister AA; Richard AL; Richmond-Landeche L; Hurry MJ; Waguespack AM Neuropharmacology; 1992 Sep; 31(9):835-41. PubMed ID: 1359441 [TBL] [Abstract][Full Text] [Related]
20. Blocking mu opioid receptors in the spinal cord prevents the analgesic action by subsequent systemic opioids. Chen SR; Pan HL Brain Res; 2006 Apr; 1081(1):119-25. PubMed ID: 16499888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]