These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 2900638)
1. Adenine nucleotides regulate the functional transition in mitochondrial H+-ATPase and the kinetic behaviour of its ATP-synthetase form. Bronnikov GE; Samoylova EV Biochem Int; 1987 May; 14(5):859-69. PubMed ID: 2900638 [TBL] [Abstract][Full Text] [Related]
2. [Reasons causing a lag period in the oxidative phosphorylation process. Isn't ATP an internal uncoupler of ATP synthetase?]. Bronnikov GE; Vinogradova SO; Mezentseva VS; Samoĭlova EV Biofizika; 1999; 44(3):465-73. PubMed ID: 10439862 [TBL] [Abstract][Full Text] [Related]
3. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559 [TBL] [Abstract][Full Text] [Related]
4. Kinetic mechanism of ATP synthesis catalyzed by mitochondrial Fo x F1-ATPase. Galkin MA; Syroeshkin AV Biochemistry (Mosc); 1999 Oct; 64(10):1176-85. PubMed ID: 10561566 [TBL] [Abstract][Full Text] [Related]
5. Effect of the natural ATPase inhibitor on the binding of adenine nucleotides and inorganic phosphate to mitochondrial F1-ATPase. Klein G; Lunardi J; Vignais PV Biochim Biophys Acta; 1981 Jul; 636(2):185-92. PubMed ID: 6456765 [TBL] [Abstract][Full Text] [Related]
6. Energy-linked binding of Pi is required for continuous steady-state proton-translocating ATP hydrolysis catalyzed by F0.F1 ATP synthase. Zharova TV; Vinogradov AD Biochemistry; 2006 Dec; 45(48):14552-8. PubMed ID: 17128994 [TBL] [Abstract][Full Text] [Related]
7. Influence of divalent cations on nucleotide exchange and ATPase activity of chloroplast coupling factor 1. Digel JG; Moore ND; McCarty RE Biochemistry; 1998 Dec; 37(49):17209-15. PubMed ID: 9860834 [TBL] [Abstract][Full Text] [Related]
8. Structural and functional differences in H+-ATPases with native and reconstituted inhibitor protein. Valdés AM; Dreyfus G Biochem Int; 1987 Aug; 15(2):459-66. PubMed ID: 2893614 [TBL] [Abstract][Full Text] [Related]
9. The pre-steady state and steady-state kinetics of the ATPase activity of mitochondrial F1. Roveri OA; Muller JL; Wilms J; Slater EC Biochim Biophys Acta; 1980 Feb; 589(2):241-55. PubMed ID: 6444524 [TBL] [Abstract][Full Text] [Related]
10. [Kinetics of Mg2+-dependent CF1-ATPase in the presence of stimulators]. Mal'ian AN Biokhimiia; 1982 Apr; 47(4):540-5. PubMed ID: 6211195 [TBL] [Abstract][Full Text] [Related]
11. Implications of the existence of two states of beef liver mitochondrial adenosine triphosphatase as revealed by kinetic studies. Wakagi T; Ohta T J Biochem; 1981 Apr; 89(4):1205-13. PubMed ID: 6454683 [TBL] [Abstract][Full Text] [Related]
12. MgATP-induced inhibition of the adenosine triphosphatase activity of the chloroform-released mitochondrial adenosine triphosphatase. Lowe PN; Beechey RB Biochem J; 1981 May; 196(2):433-42. PubMed ID: 6459083 [TBL] [Abstract][Full Text] [Related]
13. Specificity of acidic phospholipids (CL & PA) in the activation of mitochondrial F0F1 ATPase by Mg2+. Ye JJ; Lin ZH Biochem Int; 1990 Oct; 22(2):219-26. PubMed ID: 2151017 [TBL] [Abstract][Full Text] [Related]
14. A study of the mitochondrial F1-ATPase tryptophan phosphorescence at 273 K. Baracca A; Barogi S; Gabellieri E; Lenaz G; Solaini G Biochem Biophys Res Commun; 1995 Feb; 207(1):369-74. PubMed ID: 7857290 [TBL] [Abstract][Full Text] [Related]
15. The alpha 3(beta Y341W)3 gamma subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP. Dou C; Fortes PA; Allison WS Biochemistry; 1998 Nov; 37(47):16757-64. PubMed ID: 9843446 [TBL] [Abstract][Full Text] [Related]
16. Simulation of cardiac work transitions, in vitro: effects of simultaneous Ca2+ and ATPase additions on isolated porcine heart mitochondria. Territo PR; French SA; Balaban RS Cell Calcium; 2001 Jul; 30(1):19-27. PubMed ID: 11396984 [TBL] [Abstract][Full Text] [Related]
17. [Presteady-state kinetics of ATP hydrolysis by chloroplast CF1-ATPASE]. Mal'ian AN; Vitseva OI Biokhimiia; 1983 May; 48(5):718-24. PubMed ID: 6223667 [TBL] [Abstract][Full Text] [Related]
18. Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase. Böckmann RA; Grubmüller H Nat Struct Biol; 2002 Mar; 9(3):198-202. PubMed ID: 11836535 [TBL] [Abstract][Full Text] [Related]
19. [Interaction of ATPase from submitochondrial fragments and a natural inhibitor protein during delta-mu-H+ generation on a membrane]. Vasil'eva EA; Panchenko MV; Vinogradov AD Biokhimiia; 1989 Sep; 54(9):1490-8. PubMed ID: 2531616 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the substrate structure and metal cofactor requirements of the rat liver mitochondrial ATP synthase/ATPase complex. Hanley-Trawick S; Carpen ME; Dunaway-Mariano D; Pedersen PL; Hullihen J Arch Biochem Biophys; 1989 Jan; 268(1):116-23. PubMed ID: 2521440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]