These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 2900759)

  • 1. Processing at immunoglobulin polyadenylation sites in lymphoid cell extracts.
    Virtanen A; Sharp PA
    EMBO J; 1988 May; 7(5):1421-9. PubMed ID: 2900759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. B-cell and plasma-cell splicing differences: a potential role in regulated immunoglobulin RNA processing.
    Bruce SR; Dingle RW; Peterson ML
    RNA; 2003 Oct; 9(10):1264-73. PubMed ID: 13130140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The regulated production of mu m and mu s mRNA is dependent on the relative efficiencies of mu s poly(A) site usage and the c mu 4-to-M1 splice.
    Peterson ML; Perry RP
    Mol Cell Biol; 1989 Feb; 9(2):726-38. PubMed ID: 2565533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of polyadenylation complexes assembled in vitro.
    Veraldi KL; Edwalds-Gilbert G; MacDonald CC; Wallace AM; Milcarek C
    RNA; 2000 May; 6(5):768-77. PubMed ID: 10836797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate cleavage and polyadenylation of exogenous RNA substrate.
    Moore CL; Sharp PA
    Cell; 1985 Jul; 41(3):845-55. PubMed ID: 2408761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific polyadenylation in a cell-free reaction.
    Moore CL; Sharp PA
    Cell; 1984 Mar; 36(3):581-91. PubMed ID: 6230155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a complex associated with processing and polyadenylation in vitro of herpes simplex virus type 1 thymidine kinase precursor RNA.
    Zhang F; Cole CN
    Mol Cell Biol; 1987 Sep; 7(9):3277-86. PubMed ID: 2823124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A small nuclear ribonucleoprotein associates with the AAUAAA polyadenylation signal in vitro.
    Hashimoto C; Steitz JA
    Cell; 1986 May; 45(4):581-91. PubMed ID: 2423249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sedimentation analysis of polyadenylation-specific complexes.
    Moore CL; Skolnik-David H; Sharp PA
    Mol Cell Biol; 1988 Jan; 8(1):226-33. PubMed ID: 2961980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducible nuclear factors binding the IgM heavy chain pre-mRNA secretory poly(A) site.
    Phillips C; Schimpl A; Dietrich-Goetz W; Clements JB; Virtanen A
    Eur J Immunol; 1996 Dec; 26(12):3144-52. PubMed ID: 8977316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The binding of a subunit of the general polyadenylation factor cleavage-polyadenylation specificity factor (CPSF) to polyadenylation sites changes during B cell development.
    Edwalds-Gilbert G; Milcarek C
    Nucleic Acids Symp Ser; 1995; (33):229-33. PubMed ID: 8643379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative processing of IgA pre-mRNA responds like IgM to alterations in the efficiency of the competing splice and cleavage-polyadenylation reactions.
    Seipelt RL; Peterson ML
    Mol Immunol; 1995 Mar; 32(4):277-85. PubMed ID: 7723773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyadenylation occurs at multiple sites in maize mitochondrial cox2 mRNA and is independent of editing status.
    Lupold DS; Caoile AG; Stern DB
    Plant Cell; 1999 Aug; 11(8):1565-78. PubMed ID: 10449588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The murine IgM secretory poly(A) site contains dual upstream and downstream elements which affect polyadenylation.
    Phillips C; Virtanen A
    Nucleic Acids Res; 1997 Jun; 25(12):2344-51. PubMed ID: 9171084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of poly(A) polymerase in the cleavage and polyadenylation of mRNA precursor.
    Terns MP; Jacob ST
    Mol Cell Biol; 1989 Apr; 9(4):1435-44. PubMed ID: 2566910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The developmentally regulated shift from membrane to secreted mu mRNA production is accompanied by an increase in cleavage-polyadenylation efficiency but no measurable change in splicing efficiency.
    Peterson ML; Gimmi ER; Perry RP
    Mol Cell Biol; 1991 Apr; 11(4):2324-7. PubMed ID: 1826045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3' RNA processing efficiency plays a primary role in generating termination-competent RNA polymerase II elongation complexes.
    Edwalds-Gilbert G; Prescott J; Falck-Pedersen E
    Mol Cell Biol; 1993 Jun; 13(6):3472-80. PubMed ID: 7684499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of an activity in B-cell extracts that selectively impairs the formation of an immunoglobulin mu s poly(A) site processing complex.
    Yan DH; Weiss EA; Nevins JR
    Mol Cell Biol; 1995 Apr; 15(4):1901-6. PubMed ID: 7891683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3' cleavage and polyadenylation of mRNA precursors in vitro requires a poly(A) polymerase, a cleavage factor, and a snRNP.
    Christofori G; Keller W
    Cell; 1988 Sep; 54(6):875-89. PubMed ID: 2842067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination of RNA Polymerase II Pausing and 3' End Processing Factor Recruitment with Alternative Polyadenylation.
    Fusby B; Kim S; Erickson B; Kim H; Peterson ML; Bentley DL
    Mol Cell Biol; 2016 Jan; 36(2):295-303. PubMed ID: 26527620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.