These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 2900778)

  • 1. Three adenine nucleotide binding sites in F1-F0 mitochondrial ATPase as revealed by presteady-state and steady-state kinetics of ATP hydrolysis. Evidence for two inhibitory ADP-specific noncatalytic sites.
    Bulygin VV; Vinogradov AD
    FEBS Lett; 1988 Aug; 236(2):497-500. PubMed ID: 2900778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis.
    Murataliev MB
    Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase.
    Sakamoto J
    J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The characteristics and effect on catalysis of nucleotide binding to noncatalytic sites of chloroplast F1-ATPase.
    Milgrom YM; Ehler LL; Boyer PD
    J Biol Chem; 1991 Jun; 266(18):11551-8. PubMed ID: 1828802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The alpha 3 beta 3 gamma complex of the F1-ATPase from thermophilic Bacillus PS3 containing the alpha D261N substitution fails to dissociate inhibitory MgADP from a catalytic site when ATP binds to noncatalytic sites.
    Jault JM; Matsui T; Jault FM; Kaibara C; Muneyuki E; Yoshida M; Kagawa Y; Allison WS
    Biochemistry; 1995 Dec; 34(50):16412-8. PubMed ID: 8845368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of stimulation of MgATPase activity of chloroplast F1-ATPase by non-catalytic adenine-nucleotide binding. Acceleration of the ATP-dependent release of inhibitory ADP from a catalytic site.
    Murataliev MB; Boyer PD
    Eur J Biochem; 1992 Oct; 209(2):681-7. PubMed ID: 1425675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of Mg2+ with F0.F1 mitochondrial ATPase as related to its slow active/inactive transition.
    Bulygin VV; Vinogradov AD
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):149-56. PubMed ID: 1828147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hysteretic inhibition of the bovine heart mitochondrial F1-ATPase is due to saturation of noncatalytic sites with ADP which blocks activation of the enzyme by ATP.
    Jault JM; Allison WS
    J Biol Chem; 1994 Jan; 269(1):319-25. PubMed ID: 8276813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bound adenine nucleotides of purified bovine mitochondrial ATP synthase.
    Beharry S; Bragg PD
    Eur J Biochem; 1996 Aug; 240(1):165-72. PubMed ID: 8797850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in the nucleotide binding domain of the alpha subunits of the F1-ATPase from thermophilic Bacillus PS3 that affect cross-talk between nucleotide binding sites.
    Grodsky NB; Dou C; Allison WS
    Biochemistry; 1998 Jan; 37(4):1007-14. PubMed ID: 9454591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of Mg2+ on mitochondrial F0.F1 ATPase and characteristics of the nucleotide binding sites.
    Ye JJ; Du J; Lin ZH
    Biochem Int; 1989 Dec; 19(6):1317-21. PubMed ID: 2534570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of adenine nucleotides to the F1-inhibitor protein complex of bovine heart submitochondrial particles.
    Martins OB; Salgado-Martins I; Grieco MA; Gómez-Puyou A; de Gómez-Puyou MT
    Biochemistry; 1992 Jun; 31(25):5784-90. PubMed ID: 1610824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between aurovertin and adenine nucleotide binding sites on mitochondrial F1-ATPase and the isolated beta subunit.
    Lunardi J; Klein G; Vignais PV
    J Biol Chem; 1986 Apr; 261(12):5350-4. PubMed ID: 2870066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles.
    Vasilyeva EA; Fitin AF; Minkov IB; Vinogradov AD
    Biochem J; 1980 Jun; 188(3):807-15. PubMed ID: 6451217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the GTPase activity of the chloroplast F1-ATPase by ATP binding at noncatalytic sites.
    Xue Z; Boyer PD
    Eur J Biochem; 1989 Feb; 179(3):677-81. PubMed ID: 2522043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in chemical properties of mitochondrial adenosinetriphosphatase upon removal of tightly bound nucleotides.
    Tamura JK; Wang JH
    Biochemistry; 1983 Apr; 22(8):1947-54. PubMed ID: 6221755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP synthesis catalyzed by the mitochondrial F1-F0 ATP synthase is not a reversal of its ATPase activity.
    Syroeshkin AV; Vasilyeva EA; Vinogradov AD
    FEBS Lett; 1995 Jun; 366(1):29-32. PubMed ID: 7789510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of mitochondrial F1-ATPase with trinitrophenyl derivatives of ATP. Photoaffinity labeling of binding sites with 2-azido-2',3'-O-(4,6-trinitrophenyl)adenosine 5'-triphosphate.
    Murataliev MB
    Eur J Biochem; 1995 Sep; 232(2):578-85. PubMed ID: 7556210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of octylglucoside on the interactions of chloroplast coupling factor 1 (CF1) with adenine nucleotides.
    Pick U; Bassilian S
    Eur J Biochem; 1983 Jun; 133(2):289-97. PubMed ID: 6221928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state rate of F1-ATPase turnover during ATP hydrolysis by the single catalytic site.
    Milgrom YaM ; Murataliev MB
    FEBS Lett; 1987 Feb; 212(1):63-7. PubMed ID: 2879744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.