These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29009)

  • 1. Respiration and oxidative phosphorylation in Treponema pallidum.
    Lysko PG; Cox CD
    Infect Immun; 1978 Aug; 21(2):462-73. PubMed ID: 29009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen uptake by Treponema pallidum.
    Cox CD; Barber MK
    Infect Immun; 1974 Jul; 10(1):123-7. PubMed ID: 4366918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of inhibitors of electron transport and oxidative phosphorylation on Trypanosoma cruzi respiration and growth.
    Stoppani AO; Docampo R; de Boiso JF; Frasch AC
    Mol Biochem Parasitol; 1980 Oct; 2(1):3-21. PubMed ID: 7007881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.
    VANDEMARK PJ; SMITH PF
    J Bacteriol; 1964 Jul; 88(1):122-9. PubMed ID: 14197876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation and the reduced nicotinamide adenine dinucleotide oxidase reaction in Streptococcus agalactiae.
    Mickelson MN
    J Bacteriol; 1969 Nov; 100(2):895-901. PubMed ID: 4311195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Susceptibility of Treponema pallidum to the toxic products of oxygen reduction and the non-treponemal nature of its catalase.
    Steiner B; Wong GH; Graves S
    Br J Vener Dis; 1984 Feb; 60(1):14-22. PubMed ID: 6421449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Energy metabolism of isolated hepatocytes at various levels of oxidative phosphorylation uncoupling].
    Toshchakov VIu; Morozova GI; Anishchenko NA
    Biokhimiia; 1991 Dec; 56(12):2131-9. PubMed ID: 1839659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG
    Biochem J; 1975 Mar; 146(3):537-47. PubMed ID: 167720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolite transport in mitochondria as a function of osmolarity.
    Chávez E; Bravo C; Holguín JA
    Arch Biochem Biophys; 1987 Feb; 253(1):94-9. PubMed ID: 2949702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of carbonyl cyanide m-chlorophenylhydrazone on respiration and respiration-dependent phosphorylation in Escherichia coli.
    Cavari BZ; Avi-Dor Y
    Biochem J; 1967 May; 103(2):601-8. PubMed ID: 4962086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells.
    Dibrov PA; Lazarova RL; Skulachev VP; Verkhovskaya ML
    Biochim Biophys Acta; 1986 Jul; 850(3):458-65. PubMed ID: 2942186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of reducing power in chemosynthesis. 3. Energy-linked reduction of pyridine nucleotides in Thiobacillus novellus.
    Aleem MI
    J Bacteriol; 1966 Feb; 91(2):729-36. PubMed ID: 4379907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP.
    BeltrandelRio H; Wilson JE
    Arch Biochem Biophys; 1991 Apr; 286(1):183-94. PubMed ID: 1897945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vanadate and dicyclohexylcarbodiimide insensitive proton extrusion from oxygen pulsed cells of the cyanobacterium Anacystis nidulans.
    Nitschmann WH; Peschek GA
    Biochem Biophys Res Commun; 1984 Aug; 123(1):358-64. PubMed ID: 6433918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of oxygen on respiration and glucose catabolism by Treponema pallidum.
    Barbieri JT; Cox CD
    Infect Immun; 1981 Mar; 31(3):992-7. PubMed ID: 7014470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hymenolepis diminuta: catalysis of transmembrane proton translocation by mitochondrial NADPH-->NAD transhydrogenase.
    Mercer NA; McKelvey JR; Fioravanti CF
    Exp Parasitol; 1999 Jan; 91(1):52-8. PubMed ID: 9920042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiratory control and ADP:O coupling ratios of isolated chick heart mitochondria.
    Toth PP; Sumerix KJ; Ferguson-Miller S; Suelter CH
    Arch Biochem Biophys; 1990 Jan; 276(1):199-211. PubMed ID: 2153362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of mitochondria isolated from cyanide-sensitive and cyanide-stimulated cultures of Acanthamoeba castellanii.
    Edwards SW; Lloyd D
    Biochem J; 1978 Jul; 174(1):203-11. PubMed ID: 212020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The proton-translocating nicotinamide-adenine dinucleotide (phosphate) transhydrogenase of rat liver mitochondria.
    Moyle J; Mitchell P
    Biochem J; 1973 Mar; 132(3):571-85. PubMed ID: 4146799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation.
    Dawson AG; Chappell JB
    Biochem J; 1978 Feb; 170(2):395-405. PubMed ID: 205211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.